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Foreword
The Baltic Way is a competition in mathematics for students in the secondary school. It
was held for the first time in 1990 with participants from Estonia, Latvia and Lithuania. It
is named after a mass demonstration in August 1989, when about two million inhabitants
of these countries stood holding hands along the road from Tallinn to Vilnius on the 50th
anniversary of the Molotov-Ribbentrop Pact. After the political changes which were soon
to follow, it became possible to invite teams from other countries, making the competition
a truly international event. Since 1990, it has taken place each year, hosted by different
countries, and since 1997, teams from all countries around the Baltic Sea plus the Nordic
countries Norway and Iceland have participated. Iceland, which was the first country to
recognise the independence of the Baltic states, was actually one of the first other than
the three Baltic ones to be invited to send a team. Occasionally, teams from countries
outside the aforementioned permanent group have participated as guests.

Each team consists of five students, who are requested to collaborate on the solution
of a set of twenty problems to be answered within four and a half hours. Just one solution
of each problem is accepted from each team. Thus it is a part of the challenge given to
the teams that they must collaborate to utilise optimally the individual skills of their
members.

This booklet contains the problems of the Baltic Way competitions 2002–2006 with
suggested solutions and tables of the scores of the teams. A printed copy is given to
participants in the Baltic Way 2007 in Copenhagen, and a PDF version is available at
www.balticway07.dk/earlierbw.php. It is based on collections of the problems of each
year with suggested solutions which were produced by the respective organisers and
published at their web sites. I should like to thank the authors of this material for
providing me with their original TEX-files.

Previously, Marcus Better compiled the problems from the years 1990–1996, and Uve
Nummert and Jan Willemson the problems from 1997–2001, with suggested solutions
in printed booklets. None of these booklets are available by now. The problems from
all the years are posted with suggested solutions at several web sites. An almost
complete collection is found at the web site of the Baltic Way 2007 in Copenhagen,
www.balticway07.dk.

A great effort has been made to ensure that the provided solutions are complete and
accurate. However, should you encounter an error or a typo, please write to me using
the email address below. Of course, other comments are also most welcome.

Hopefully, this collection of problems of varying difficulty will be useful in education
and training for national and international competitions in mathematics. Everyone is
free to use it for such purposes. If the problems, or some of them, are published in print
or on the World Wide Web, a due citation in the form “Baltic Way 200x” is requested.

Århus, October 2007

Rasmus Villemoes
burner@imf.au.dk
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Baltic Way 2002
Tartu, Estonia

October 31–November 4, 2002

02.1. (p. 15) Solve the system of equations

a3 + 3ab2 + 3ac2 − 6abc = 1

b3 + 3ba2 + 3bc2 − 6abc = 1

c3 + 3ca2 + 3cb2 − 6abc = 1

in real numbers.

02.2. (p. 15) Let a, b, c, d be real numbers such that

a + b + c + d = −2,
ab + ac + ad + bc + bd + cd = 0.

Prove that at least one of the numbers a, b, c, d is not greater than −1.

02.3. (p. 16) Find all sequences a0 ≤ a1 ≤ a2 ≤ · · · of real numbers such that
am2+n2 = a2

m + a2
n

for all integers m, n ≥ 0.

02.4. (p. 17) Let n be a positive integer. Prove that

n

∑
i=1

xi(1− xi)
2 ≤

(
1− 1

n

)2

for all nonnegative real numbers x1, x2, . . . , xn such that x1 + x2 + · · ·+ xn = 1.

02.5. (p. 18) Find all pairs (a, b) of positive rational numbers such that

√
a +
√

b =

√
2 +
√

3.

02.6. (p. 18) The following solitaire game is played on an m× n rectangular board, m, n ≥ 2,
divided into unit squares. First, a rook is placed on some square. At each move, the rook
can be moved an arbitrary number of squares horizontally or vertically, with the extra
condition that each move has to be made in the 90◦ clockwise direction compared to the
previous one (e.g. after a move to the left, the next one has to be done upwards, the next
one to the right etc.). For which values of m and n is it possible that the rook visits every
square of the board exactly once and returns to the first square? (The rook is considered
to visit only those squares it stops on, and not the ones it steps over.)

02.7. (p. 19) We draw n convex quadrilaterals in the plane. They divide the plane into
regions (one of the regions is infinite). Determine the maximal possible number of these
regions.

02.8. (p. 19) Let P be a set of n ≥ 3 points in the plane, no three of which are on a line.
How many possibilities are there to choose a set T of (n−1

2 ) triangles, whose vertices are
all in P, such that each triangle in T has a side that is not a side of any other triangle
in T?

3



4 Baltic Way

02.9. (p. 20) Two magicians show the following trick. The first magician goes out of the
room. The second magician takes a deck of 100 cards labelled by numbers 1, 2, . . . , 100
and asks three spectators to choose in turn one card each. The second magician sees
what card each spectator has taken. Then he adds one more card from the rest of the
deck. Spectators shuffle these four cards, call the first magician and give him these four
cards. The first magician looks at the four cards and “guesses” what card was chosen by
the first spectator, what card by the second and what card by the third. Prove that the
magicians can perform this trick.
02.10. (p. 22) Let N be a positive integer. Two persons play the following game. The first
player writes a list of positive integers not greater than 25, not necessarily different, such
that their sum is at least 200. The second player wins if he can select some of these
numbers so that their sum S satisfies the condition 200− N ≤ S ≤ 200 + N. What is the
smallest value of N for which the second player has a winning strategy?
02.11. (p. 22) Let n be a positive integer. Consider n points in the plane such that no three
of them are collinear and no two of the distances between them are equal. One by one,
we connect each point to the two points nearest to it by line segments (if there are already
other line segments drawn to this point, we do not erase these). Prove that there is no
point from which line segments will be drawn to more than 11 points.
02.12. (p. 23) A set S of four distinct points is given in the plane. It is known that for any
point X ∈ S the remaining points can be denoted by Y, Z and W so that

XY = XZ + XW.

Prove that all the four points lie on a line.
02.13. (p. 23) Let ABC be an acute triangle with ∠BAC > ∠BCA, and let D be a point on
the side AC such that AB = BD. Furthermore, let F be a point on the circumcircle of
triangle ABC such that the line FD is perpendicular to the side BC and points F, B lie on
different sides of the line AC. Prove that the line FB is perpendicular to the side AC.
02.14. (p. 24) Let L, M and N be points on sides AC, AB and BC of triangle ABC,
respectively, such that BL is the bisector of angle ABC and segments AN, BL and CM
have a common point. Prove that if ∠ALB = ∠MNB then ∠LNM = 90◦.
02.15. (p. 24) A spider and a fly are sitting on a cube. The fly wants to maximize the
shortest path to the spider along the surface of the cube. Is it necessarily best for the fly
to be at the point opposite to the spider? (“Opposite” means “symmetric with respect to
the centre of the cube”.)
02.16. (p. 25) Find all nonnegative integers m such that

am =
(

22m+1
)2

+ 1

is divisible by at most two different primes.
02.17. (p. 25) Show that the sequence(

2002
2002

)
,
(

2003
2002

)
,
(

2004
2002

)
, . . . ,

considered modulo 2002, is periodic.
02.18. (p. 26) Find all integers n > 1 such that any prime divisor of n6 − 1 is a divisor of
(n3 − 1)(n2 − 1).
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02.19. (p. 26) Let n be a positive integer. Prove that the equation

x + y + 1
x + 1

y = 3n

does not have solutions in positive rational numbers.
02.20. (p. 27) Does there exist an infinite non-constant arithmetic progression, each term of
which is of the form ab, where a and b are positive integers with b ≥ 2?



Baltic Way 2003
Riga, Latvia

October 31–November 4, 2003

03.1. (p. 28) Let Q+ be the set of positive rational numbers. Find all functions f : Q+ → Q+

which for all x ∈ Q+ fulfil

(1) f ( 1
x ) = f (x)

(2) (1 + 1
x ) f (x) = f (x + 1)

03.2. (p. 28) Prove that any real solution of

x3 + px + q = 0

satisfies the inequality 4qx ≤ p2.
03.3. (p. 28) Let x, y and z be positive real numbers such that xyz = 1. Prove that

(1 + x)(1 + y)(1 + z) ≥ 2
(
1 + 3

√
y
x
+ 3

√
z
y
+ 3

√
x
z
)
.

03.4. (p. 29) Let a, b, c be positive real numbers. Prove that

2a
a2 + bc

+
2b

b2 + ca
+

2c
c2 + ab

≤ a
bc

+
b
ca

+
c

ab
.

03.5. (p. 29) A sequence (an) is defined as follows: a1 =
√

2, a2 = 2, and an+1 = ana2
n−1 for

n ≥ 2. Prove that for every n ≥ 1 we have

(1 + a1)(1 + a2) · · · (1 + an) < (2 +
√

2)a1a2 · · · an.

03.6. (p. 30) Let n ≥ 2 and d ≥ 1 be integers with d | n, and let x1, x2, . . . , xn be real numbers
such that x1 + x2 + · · ·+ xn = 0. Prove that there are at least (n−1

d−1) choices of d indices
1 ≤ i1 < i2 < · · · < id ≤ n such that xi1 + xi2 + · · ·+ xid ≥ 0.
03.7. (p. 30) Let X be a subset of {1, 2, 3, . . . , 10000} with the following property: If a, b ∈ X,
a 6= b, then a · b /∈ X. What is the maximal number of elements in X?
03.8. (p. 31) There are 2003 pieces of candy on a table. Two players alternately make moves.
A move consists of eating one candy or half of the candies on the table (the “lesser half”
if there is an odd number of candies); at least one candy must be eaten at each move.
The loser is the one who eats the last candy. Which player – the first or the second – has
a winning strategy?
03.9. (p. 31) It is known that n is a positive integer, n ≤ 144. Ten questions of type “Is n
smaller than a?” are allowed. Answers are given with a delay: The answer to the i’th
question is given only after the (i + 1)’st question is asked, i = 1, 2, . . . , 9. The answer to
the tenth question is given immediately after it is asked. Find a strategy for identifying n.
03.10. (p. 31) A lattice point in the plane is a point whose coordinates are both integral. The
centroid of four points (xi, yi), i = 1, 2, 3, 4, is the point ( x1+x2+x3+x4

4 , y1+y2+y3+y4
4 ). Let n

be the largest natural number with the following property: There are n distinct lattice
points in the plane such that the centroid of any four of them is not a lattice point. Prove
that n = 12.

6
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03.11. (p. 32) Is it possible to select 1000 points in a plane so that at least 6000 distances
between two of them are equal?
03.12. (p. 32) Let ABCD be a square. Let M be an inner point on side BC and N be an
inner point on side CD with ∠MAN = 45◦. Prove that the circumcentre of AMN lies on
AC.
03.13. (p. 32) Let ABCD be a rectangle and BC = 2 · AB. Let E be the midpoint of BC
and P an arbitrary inner point of AD. Let F and G be the feet of perpendiculars drawn
correspondingly from A to BP and from D to CP. Prove that the points E, F, P, G are
concyclic.
03.14. (p. 33) Let ABC be an arbitrary triangle and AMB, BNC, CKA regular triangles
outward of ABC. Through the midpoint of MN a perpendicular to AC is constructed;
similarly through the midpoints of NK resp. KM perpendiculars to AB resp. BC are
constructed. Prove that these three perpendiculars intersect at the same point.
03.15. (p. 33) Let P be the intersection point of the diagonals AC and BD in a cyclic
quadrilateral. A circle through P touches the side CD in the midpoint M of this side and
intersects the segments BD and AC in the points Q and R, respectively. Let S be a point
on the segment BD such that BS = DQ. The parallel to AB through S intersects AC at T.
Prove that AT = RC.
03.16. (p. 34) Find all pairs of positive integers (a, b) such that a− b is a prime and ab is a
perfect square.
03.17. (p. 34) All the positive divisors of a positive integer n are stored into an array in
increasing order. Mary has to write a program which decides for an arbitrarily chosen
divisor d > 1 whether it is a prime. Let n have k divisors not greater than d. Mary claims
that it suffices to check divisibility of d by the first dk/2e divisors of n: If a divisor of d
greater than 1 is found among them, then d is composite, otherwise d is prime. Is Mary
right?
03.18. (p. 35) Every integer is coloured with exactly one of the colours blue, green, red,
yellow. Can this be done in such a way that if a, b, c, d are not all 0 and have the same
colour, then 3a− 2b 6= 2c− 3d?
03.19. (p. 35) Let a and b be positive integers. Prove that if a3 + b3 is the square of an
integer, then a + b is not a product of two different prime numbers.
03.20. (p. 36) Let n be a positive integer such that the sum of all the positive divisors of n
(except n) plus the number of these divisors is equal to n. Prove that n = 2m2 for some
integer m.



Baltic Way 2004
Vilnius, Lithuania

November 5–November 9, 2004

04.1. (p. 37) Given a sequence a1, a2, a3, . . . of non-negative real numbers satisfying the
conditions

(1) an + a2n ≥ 3n

(2) an+1 + n ≤ 2
√

an · (n + 1)

for all indices n = 1, 2 . . ..

(a) Prove that the inequality an ≥ n holds for every n ∈N.

(b) Give an example of such a sequence.

04.2. (p. 37) Let P(x) be a polynomial with non-negative coefficients. Prove that if
P( 1

x )P(x) ≥ 1 for x = 1, then the same inequality holds for each positive x.
04.3. (p. 38) Let p, q, r be positive real numbers and n ∈N. Show that if pqr = 1, then

1
pn + qn + 1

+
1

qn + rn + 1
+

1
rn + pn + 1

≤ 1.

04.4. (p. 38) Let x1, x2, . . . , xn be real numbers with arithmetic mean X. Prove that there
is a positive integer K such that the arithmetic mean of each of the lists {x1, x2, . . . , xK},
{x2, x3, . . . , xK}, . . . , {xK−1, xK}, {xK} is not greater than X.
04.5. (p. 38) Determine the range of the function f defined for integers k by

f (k) = (k)3 + (2k)5 + (3k)7 − 6k,

where (k)2n+1 denotes the multiple of 2n + 1 closest to k.
04.6. (p. 39) A positive integer is written on each of the six faces of a cube. For each vertex
of the cube we compute the product of the numbers on the three adjacent faces. The sum
of these products is 1001. What is the sum of the six numbers on the faces?
04.7. (p. 39) Find all sets X consisting of at least two positive integers such that for every
pair m, n ∈ X, where n > m, there exists k ∈ X such that n = mk2.
04.8. (p. 39) Let f be a non-constant polynomial with integer coefficients. Prove that there
is an integer n such that f (n) has at least 2004 distinct prime factors.
04.9. (p. 40) A set S of n− 1 natural numbers is given (n ≥ 3). There exists at least two
elements in this set whose difference is not divisible by n. Prove that it is possible to
choose a non-empty subset of S so that the sum of its elements is divisible by n.
04.10. (p. 40) Is there an infinite sequence of prime numbers p1, p2, . . . such that |pn+1 −
2pn| = 1 for each n ∈N?
04.11. (p. 40) An m× n table is given, in each cell of which a number +1 or −1 is written.
It is known that initially exactly one −1 is in the table, all the other numbers being +1.
During a move, it is allowed to choose any cell containing −1, replace this −1 by 0, and
simultaneously multiply all the numbers in the neighboring cells by −1 (we say that two
cells are neighboring if they have a common side). Find all (m, n) for which using such
moves one can obtain the table containing zeroes only, regardless of the cell in which the
initial −1 stands.

8
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04.12. (p. 41) There are 2n different numbers in a row. By one move we can interchange
any two numbers or interchange any three numbers cyclically (choose a, b, c and place a
instead of b, b instead of c and c instead of a). What is the minimal number of moves
that is always sufficient to arrange the numbers in increasing order?
04.13. (p. 41) The 25 member states of the European Union set up a committee with the
following rules: (1) the committee should meet daily; (2) at each meeting, at least one
member state should be represented; (3) at any two different meetings, a different set of
member states should be represented; and (4) at the n’th meeting, for every k < n, the
set of states represented should include at least one state that was represented at the k’th
meeting. For how many days can the committee have its meetings?
04.14. (p. 41) We say that a pile is a set of four or more nuts. Two persons play the following
game. They start with one pile of n ≥ 4 nuts. During a move a player takes one of the
piles that they have and split it into two non-empty subsets (these sets are not necessarily
piles, they can contain an arbitrary number of nuts). If the player cannot move, he loses.
For which values of n does the first player have a winning strategy?
04.15. (p. 42) A circle is divided into 13 segments, numbered consecutively from 1 to 13.
Five fleas called A, B, C, D and E are sitting in the segments 1, 2, 3, 4 and 5. A flea is
allowed to jump to an empty segment five positions away in either direction around
the circle. Only one flea jumps at the same time, and two fleas cannot be in the same
segment. After some jumps, the fleas are back in the segments 1, 2, 3, 4, 5, but possibly in
some other order than they started. Which orders are possible?
04.16. (p. 43) Through a point P exterior to a given circle pass a secant and a tangent to the
circle. The secant intersects the circle at A and B, and the tangent touches the circle at
C on the same side of the diameter thorugh P as A and B. The projection of C on the
diameter is Q. Prove that QC bisects ∠AQB.
04.17. (p. 43) Consider a rectangle with side lengths 3 and 4, and pick an arbitrary inner
point on each side. Let x, y, z and u denote the side lengths of the quadrilateral spanned
by these points. Prove that 25 ≤ x2 + y2 + z2 + u2 ≤ 50.
04.18. (p. 43) A ray emanating from the vertex A of the triangle ABC intersects the side BC
at X and the circumcircle of ABC at Y. Prove that 1

AX + 1
XY ≥

4
BC .

04.19. (p. 43) D is the midpoint of the side BC of the given triangle ABC. M is a point
on the side BC such that ∠BAM = ∠DAC. L is the second intersection point of the
circumcircle of the triangle CAM with the side AB. K is the second intersection point of
the circumcircle of the triangle BAM with the side AC. Prove that KL ‖ BC.
04.20. (p. 44) Three circular arcs w1, w2, w3 with common endpoints A and B are on the
same side of the line AB; w2 lies between w1 and w3. Two rays emanating from B intersect
these arcs at M1, M2, M3 and K1, K2, K3, respectively. Prove that M1 M2

M2 M3
= K1K2

K2K3
.



Baltic Way 2005
Stockholm, Sweden

November 3–November 7, 2005

05.1. (p. 45) Let a0 be a positive integer. Define the sequence an, n ≥ 0, as follows: If

an =
j

∑
i=0

ci10i

where ci are integers with 0 ≤ ci ≤ 9, then

an+1 = c2005
0 + c2005

1 + · · ·+ c2005
j .

Is it possible to choose a0 so that all the terms in the sequence are distinct?

05.2. (p. 45) Let α, β and γ be three angles with 0 ≤ α, β, γ < 90◦ and sin α + sin β + sin γ =
1. Show that

tan2 α + tan2 β + tan2 γ ≥ 3
8

.

05.3. (p. 46) Consider the sequence ak defined by a1 = 1, a2 = 1
2 ,

ak+2 = ak +
1
2

ak+1 +
1

4akak+1
for k ≥ 1.

Prove that
1

a1a3
+

1
a2a4

+
1

a3a5
+ · · ·+ 1

a98a100
< 4.

05.4. (p. 46) Find three different polynomials P(x) with real coefficients such that P(x2 +
1) = P(x)2 + 1 for all real x.

05.5. (p. 47) Let a, b, c be positive real numbers with abc = 1. Prove that
a

a2 + 2
+

b
b2 + 2

+
c

c2 + 2
≤ 1.

05.6. (p. 47) Let K and N be positive integers with 1 ≤ K ≤ N. A deck of N different
playing cards is shuffled by repeating the operation of reversing the order of the K
topmost cards and moving these to the bottom of the deck. Prove that the deck will be
back in its initial order after a number of operations not greater than 4 · N2/K2.

05.7. (p. 48) A rectangular array has n rows and six columns, where n > 2. In each cell
there is written either 0 or 1. All rows in the array are different from each other. For each
pair of rows (x1, x2, . . . , x6) and (y1, y2, . . . , y6), the row (x1y1, x2y2, . . . , x6y6) can also be
found in the array. Prove that there is a column in which at least half of the entries are
zeroes.

05.8. (p. 48) Consider a grid of 25× 25 unit squares. Draw with a red pen contours of
squares of any size on the grid. What is the minimal number of squares we must draw
in order to colour all the lines of the grid?

05.9. (p. 49) A rectangle is divided into 200× 3 unit squares. Prove that the number of
ways of splitting this rectangle into rectangles of size 1× 2 is divisible by 3.

10
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05.10. (p. 49) Let m = 30030 = 2 · 3 · 5 · 7 · 11 · 13 and let M be the set of its positive
divisors which have exactly two prime factors. Determine the minimal integer n with
the following property: for any choice of n numbers from M, there exist three numbers
a, b, c among them satisfying a · b · c = m.
05.11. (p. 49) Let the points D and E lie on the sides BC and AC, respectively, of the triangle
ABC, satisfying BD = AE. The line joining the circumcentres of the triangles ADC and
BEC meets the lines AC and BC at K and L, respectively. Prove that KC = LC.
05.12. (p. 50) Let ABCD be a convex quadrilateral such that BC = AD. Let M and N be
the midpoints of AB and CD, respectively. The lines AD and BC meet the line MN at P
and Q, respectively. Prove that CQ = DP.
05.13. (p. 50) What is the smallest number of circles of radius

√
2 that are needed to cover

a rectangle

(a) of size 6× 3?

(b) of size 5× 3?

05.14. (p. 51) Let the medians of the triangle ABC meet at M. Let D and E be different
points on the line BC such that DC = CE = AB, and let P and Q be points on the
segments BD and BE, respectively, such that 2BP = PD and 2BQ = QE. Determine
∠PMQ.
05.15. (p. 51) Let the lines e and f be perpendicular and intersect each other at O. Let A
and B lie on e and C and D lie on f , such that all the five points A, B, C, D and O are
distinct. Let the lines b and d pass through B and D respectively, perpendicularly to AC;
let the lines a and c pass through A and C respectively, perpendicularly to BD. Let a and
b intersect at X and c and d intersect at Y. Prove that XY passes through O.
05.16. (p. 52) Let p be a prime number and let n be a positive integer. Let q be a positive
divisor of (n + 1)p − np. Show that q− 1 is divisible by p.
05.17. (p. 53) A sequence (xn), n ≥ 0, is defined as follows: x0 = a, x1 = 2 and xn =
2xn−1xn−2 − xn−1 − xn−2 + 1 for n > 1. Find all integers a such that 2x3n − 1 is a perfect
square for all n ≥ 1.
05.18. (p. 53) Let x and y be positive integers and assume that z = 4xy/(x + y) is an odd
integer. Prove that at least one divisor of z can be expressed in the form 4n− 1 where n
is a positive integer.
05.19. (p. 53) Is it possible to find 2005 different positive square numbers such that their
sum is also a square number?
05.20. (p. 54) Find all positive integers n = p1 p2 · · · pk which divide (p1 + 1)(p2 + 1) · · · (pk +
1), where p1 p2 · · · pk is the factorization of n into prime factors (not necessarily distinct).
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06.1. (p. 55) For a sequence a1, a2, a3, . . . of real numbers it is known that
an = an−1 + an+2 for n = 2, 3, 4, . . . .

What is the largest number of its consecutive elements that can all be positive?
06.2. (p. 55) Suppose that the real numbers ai ∈ [−2, 17], i = 1, 2, . . . , 59, satisfy a1 + a2 +
· · ·+ a59 = 0. Prove that

a2
1 + a2

2 + · · ·+ a2
59 ≤ 2006.

06.3. (p. 55) Prove that for every polynomial P(x) with real coefficients there exist a positive
integer m and polynomials P1(x), P2(x), . . . , Pm(x) with real coefficients such that

P(x) =
(

P1(x)
)3

+
(

P2(x)
)3

+ · · ·+
(

Pm(x)
)3.

06.4. (p. 56) Let a, b, c, d, e, f be non-negative real numbers satisfying a+ b+ c+ d+ e+ f =
6. Find the maximal possible value of

abc + bcd + cde + de f + e f a + f ab

and determine all 6-tuples (a, b, c, d, e, f ) for which this maximal value is achieved.
06.5. (p. 56) An occasionally unreliable professor has devoted his last book to a certain
binary operation ∗. When this operation is applied to any two integers, the result is
again an integer. The operation is known to satisfy the following axioms:

(a) x ∗ (x ∗ y) = y for all x, y ∈ Z;

(b) (x ∗ y) ∗ y = x for all x, y ∈ Z.

The professor claims in his book that

(C1) the operation ∗ is commutative: x ∗ y = y ∗ x for all x, y ∈ Z.

(C2) the operation ∗ is associative: (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ Z.

Which of these claims follow from the stated axioms?
06.6. (p. 57) Determine the maximal size of a set of positive integers with the following
properties:

(1) The integers consist of digits from the set {1, 2, 3, 4, 5, 6}.
(2) No digit occurs more than once in the same integer.

(3) The digits in each integer are in increasing order.

(4) Any two integers have at least one digit in common (possibly at different positions).

(5) There is no digit which appears in all the integers.

06.7. (p. 57) A photographer took some pictures at a party with 10 people. Each of the 45
possible pairs of people appears together on exactly one photo, and each photo depicts
two or three people. What is the smallest possible number of photos taken?

12
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06.8. (p. 57) The director has found out that six conspiracies have been set up in his
department, each of them involving exactly three persons. Prove that the director can
split the department in two laboratories so that none of the conspirative groups is entirely
in the same laboratory.
06.9. (p. 58) To every vertex of a regular pentagon a real number is assigned. We may
perform the following operation repeatedly: we choose two adjacent vertices of the
pentagon and replace each of the two numbers assigned to these vertices by their
arithmetic mean. Is it always possible to obtain the position in which all five numbers
are zeroes, given that in the initial position the sum of all five numbers is equal to zero?
06.10. (p. 58) 162 pluses and 144 minuses are placed in a 30× 30 table in such a way that
each row and each column contains at most 17 signs. (No cell contains more than one
sign.) For every plus we count the number of minuses in its row and for every minus
we count the number of pluses in its column. Find the maximum of the sum of these
numbers.
06.11. (p. 58) The altitudes of a triangle are 12, 15 and 20. What is the area of the triangle?
06.12. (p. 59) Let ABC be a triangle, let B1 be the midpoint of the side AB and C1 the
midpoint of the side AC. Let P be the point of intersection, other than A, of the
circumscribed circles around the triangles ABC1 and AB1C. Let P1 be the point of
intersection, other than A, of the line AP with the circumscribed circle around the
triangle AB1C1. Prove that 2AP = 3AP1.
06.13. (p. 59) In a triangle ABC, points D, E lie on sides AB, AC respectively. The lines BE
and CD intersect at F. Prove that if

BC2 = BD · BA + CE · CA,

then the points A, D, F, E lie on a circle.
06.14. (p. 59) There are 2006 points marked on the surface of a sphere. Prove that the
surface can be cut into 2006 congruent pieces so that each piece contains exactly one of
these points inside it.
06.15. (p. 60) Let the medians of the triangle ABC intersect at the point M. A line t through
M intersects the circumcircle of ABC at X and Y so that A and C lie on the same side of
t. Prove that BX · BY = AX · AY + CX · CY.
06.16. (p. 61) Are there four distinct positive integers such that adding the product of any
two of them to 2006 yields a perfect square?
06.17. (p. 61) Determine all positive integers n such that 3n + 1 is divisible by n2.
06.18. (p. 61) For a positive integer n let an denote the last digit of n(nn). Prove that the
sequence (an) is periodic and determine the length of the minimal period.
06.19. (p. 61) Does there exist a sequence a1, a2, a3, . . . of positive integers such that the sum
of every n consecutive elements is divisible by n2 for every positive integer n?
06.20. (p. 62) A 12-digit positive integer consisting only of digits 1, 5 and 9 is divisible by
37. Prove that the sum of its digits is not equal to 76.
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Baltic Way 2002

02.1. Solve the system of equations

a3 + 3ab2 + 3ac2 − 6abc = 1

b3 + 3ba2 + 3bc2 − 6abc = 1

c3 + 3ca2 + 3cb2 − 6abc = 1

in real numbers.
Answer: a = 1, b = 1, c = 1.
Solution: Denoting the left-hand sides of the given equations as A, B and C, the following
equalities can easily be seen to hold:

−A + B + C = (−a + b + c)3

A− B + C = (a− b + c)3

A + B− C = (a + b− c)3

Hence, the system of equations given in the problem is equivalent to

(−a + b + c)3 = 1, (a− b + c)3 = 1, (a + b− c)3 = 1,

which gives

−a + b + c = 1, a− b + c = 1, a + b− c = 1.

The unique solution of this system is (a, b, c) = (1, 1, 1).

02.2. Let a, b, c, d be real numbers such that

a + b + c + d = −2, (02.1)
ab + ac + ad + bc + bd + cd = 0. (02.2)

Prove that at least one of the numbers a, b, c, d is not greater than −1.
Solution: We can assume that a is the least among a, b, c, d (or one of the least, if some of
them are equal), there are n > 0 negative numbers among a, b, c, d, and the sum of the
positive ones is x.

Then we obtain

−2 = a + b + c + d ≥ na + x. (02.3)

Squaring we get 4 = a2 + b2 + c2 + d2, which implies

4 ≤ n · a2 + x2 (02.4)

as the square of the sum of positive numbers is not less than the sum of their squares.
The inequality (02.3) implies that −x ≥ na + 2, and since both sides are negative we

get x2 ≤ (na + 2)2. Combining this with (02.4) we obtain na2 + (na + 2)2 ≥ 4, which
implies that

a2 + na2 + 4a ≥ 0.
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As n ≤ 3 (if all the numbers are negative, the second condition of the problem cannot be
satisfied), we obtain from the last inequality that 4a2 + 4a ≥ 0, whence

a(a + 1) ≥ 0.

As a < 0 it follows that a ≤ −1.
Solution 2: Assume that a, b, c, d > −1. Denoting A = a + 1, B = b + 1, C = c + 1,
D = d + 1 we have A, B, C, D > 0. Then the first equation gives

A + B + C + D = 2. (02.5)

We also have

ab = (A− 1)(B− 1) = AB− A− B + 1.

Adding five similar terms to the last one we get from the second equation

AB + AC + AD + BC + BD + CD− 3(A + B + C + D) + 6 = 0.

In view of (02.5) this implies

AB + AC + AD + BC + BD + CD = 0,

a contradiction as all the unknowns A, B, C, D were supposed to be positive.
Solution 3: Assume that the conditions (02.1) and (02.2) of the problem hold, and that

a, b, c, d > −1. (02.6)

If all of a, b, c, d were negative, then (02.2) could not be satisfied, so at most three of them
are negative. If two or less of them were negative, then (02.6) would imply that the sum
of negative numbers, and hence also the sum a + b + c + d, is greater than 2 · (−1) = −2,
which contradicts (02.1). So exactly three of a, b, c, d are negative and one is nonnegative.
Let d be the nonnegative one. Then d = −2− (a + b + c) < −2− (−1− 1− 1) = 1.
Obviously |a|, |b|, |c|, |d| < 1. Squaring (02.1) and subtracting 2 times (02.2), we get

a2 + b2 + c2 + d2 = 4,

but
a2 + b2 + c2 + d2 = |a|2 + |b|2 + |c|2 + |d|2 < 4,

a contradiction.
02.3. Find all sequences a0 ≤ a1 ≤ a2 ≤ · · · of real numbers such that

am2+n2 = a2
m + a2

n (02.7)

for all integers m, n ≥ 0.
Answer: an ≡ 0, an ≡ 1

2 and an = n.
Solution: Substituting m = n = 0 into (02.7) we get a0 = 2a2

0, hence either a0 = 1
2 or

a0 = 0. We consider these cases separately.
(1) If a0 = 1

2 then substituting m = 1 and n = 0 into (02.7) we obtain a1 = a2
1 +

1
4 , whence(

a1 − 1
2

)2
= 0 and a1 = 1

2 . Now,

a2 = a12+12 = 2a2
1 = 1

2 ,

a8 = a22+22 = 2a2
2 = 1

2 ,
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etc., implying that a2i = 1
2 for arbitrarily large natural i and, due to monotonicity, an = 1

2
for every natural n.

(2) If a0 = 0 then by substituting m = 1, n = 0 into (02.7) we obtain a1 = a2
1 and hence,

a1 = 0 or a1 = 1. This gives two subcases.

(2a) If a0 = 0 and a1 = 0 then by the same technique as above we see that a2i = 0 for
arbitrarily large natural i and, due to monotonicity, an = 0 for every natural n.

(2b) If a0 = 0 and a1 = 1 then we compute

a2 = a12+12 = 2a2
1 = 2,

a4 = a22+02 = a2
2 = 4,

a5 = a22+12 = a2
2 + a2

1 = 5.

Now,
a2

3 + a2
4 = a25 = a2

5 + a2
0 = 25,

hence a2
3 = 25− 16 = 9 and a3 = 3. Further,

a8 = a22+22 = 2a2
2 = 8,

a9 = a32+02 = a2
3 = 9,

a10 = a32+12 = a2
3 + a2

1 = 10.

From the equalities
a2

6 + a2
8 = a2

10 + a2
0,

a2
7 + a2

1 = a2
5 + a2

5,

we also conclude that a6 = 6 and a7 = 7. It remains to note that

(2k + 1)2 + (k− 2)2 = (2k− 1)2 + (k + 2)2,

(2k + 2)2 + (k− 4)2 = (2k− 2)2 + (k + 4)2,

and by induction it follows that an = n for every natural n.

02.4. Let n be a positive integer. Prove that

n

∑
i=1

xi(1− xi)
2 ≤

(
1− 1

n

)2

for all nonnegative real numbers x1, x2, . . . , xn such that x1 + x2 + · · ·+ xn = 1.
Solution: Expanding the expressions at both sides we obtain the equivalent inequality

−∑
i

x3
i + 2 ∑

i
x2

i −
2
n
+

1
n2 ≥ 0.

It is easy to check that the left-hand side is equal to

∑
i

(
2− 2

n − xi
)(

xi − 1
n

)2

and hence is nonnegative.
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Solution 2: First note that for n = 1 the required condition holds trivially, and for n = 2
we have

x(1− x)2 + (1− x)x2 = x(1− x) ≤
( x + (1− x)

2

)2
=
(

1− 1
2

)2
.

We now consider the case n ≥ 3.
Assume first that for each index i the inequality xi <

2
3 holds. Let f (x) = x(1− x)2 =

x− 2x2 + x3, then f ′′(x) = 6x− 4. Hence, the function f is concave in the interval
[
0, 2

3

]
.

Thus, from Jensen’s inequality we have
n

∑
i=1

xi(1− xi)
2 =

n

∑
i=1

f (xi) ≤ n · f
( x1 + · · ·+ xn

n

)
= n · f ( 1

n )

= n · 1
n

(
1− 1

n

)2
=
(
1− 1

n

)2.

If some xi ≥ 2
3 then we have

xi(1− xi)
2 ≤ 1 · (1− 2

3 )
2 = 1

9 .

For the rest of the terms we have

∑
j 6=i

xj(1− xj)
2 ≤∑

j 6=i
xj = 1− xi ≤ 1

3 .

Hence,
n

∑
i=1

xi(1− xi)
2 ≤ 1

9 +
1
3 = 4

9 ≤
(
1− 1

n

)2

as n ≥ 3.
02.5. Find all pairs (a, b) of positive rational numbers such that

√
a +
√

b =

√
2 +
√

3.

Answer: The two solutions are (a, b) =
( 1

2 , 3
2

)
and (a, b) =

( 3
2 , 1

2

)
.

Solution: Squaring both sides of the equation gives

a + b + 2
√

ab = 2 +
√

3 (02.8)

so 2
√

ab = r +
√

3 for some rational number r. Squaring both sides of this gives
4ab = r2 + 3 + 2r

√
3, so 2r

√
3 is rational, which implies r = 0. Hence ab = 3/4 and

substituting this into (02.8) gives a + b = 2. Solving for a and b gives (a, b) =
( 1

2 , 3
2

)
or

(a, b) =
( 3

2 , 1
2

)
.

02.6. The following solitaire game is played on an m× n rectangular board, m, n ≥ 2, divided
into unit squares. First, a rook is placed on some square. At each move, the rook can be moved an
arbitrary number of squares horizontally or vertically, with the extra condition that each move
has to be made in the 90◦ clockwise direction compared to the previous one (e.g. after a move to
the left, the next one has to be done upwards, the next one to the right etc.). For which values of
m and n is it possible that the rook visits every square of the board exactly once and returns to the
first square? (The rook is considered to visit only those squares it stops on, and not the ones it
steps over.)
Answer: It is possible precisely when m and n are even.
Solution: First, consider any row that is not the row where the rook starts from. The
rook has to visit all the squares of that row exactly once, and on its tour around the
board, every time it visits this row, exactly two squares get visited. Hence, m must be
even; a similar argument for the columns shows that n must also be even.
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2 3
6 7

10
1
9 8
5 4

2 14 22 34 35 23 15 3
6 18 26 38 39 27 19 7

10 30 31 11
1 21 40 20
9 17 29 37 36 28 16 8
5 13 25 33 32 24 12 4

It remains to prove that for any even m and n such a tour is
possible. We will show it by an induction-like argument. Labelling
the squares with pairs of integers (i, j), where 1 ≤ i ≤ m and 1 ≤ j ≤
n, we start moving from the square (1, n

2 + 1) and first cover all the
squares of the first and last columns in the order shown in the figure
to the right, except for the squares (m, n

2 ) and (m, n
2 + 1); note that

we finish on the square (1, n
2 ).

The next square to visit is (m− 1, n
2 ) and now we will cover the

columns numbered 2 and m− 1, except for the two middle squares
in column 2. Continuing in this way we can visit all the squares
except for the two middle squares in every second column (note that
here we need the assumption that m and n are even). The rest of the
squares can be visited easily.

02.7. We draw n convex quadrilaterals in the plane. They divide the plane into regions (one of the
regions is infinite). Determine the maximal possible number of these regions.
Answer: The maximal number of regions is 4n2 − 4n + 2.
Solution: One quadrilateral produces two regions. Suppose we have drawn k quadri-
laterals Q1, . . . , Qk and produced ak regions. We draw another quadrilateral Qk+1 and
try to evaluate the number of regions ak+1 now produced. Note that if a vertex of Qi is
located on an edge of another quadrilateral then it is possible to move this vertex a little
bit to obtain a configuration with the same number of regions or one more region. Hence
there exists a maximal configuration where no vertex of any Qi is located on an edge
of another quadrilateral, and in the following, looking only for the maximal number of
regions, we can assume that no vertex of a quadrilateral is located on an edge of another
quadrilateral.

Because of this fact and the convexity of the Qj’s, any one of the four sides of Qk+1
meets at most two sides of any Qj. So the sides of Qk+1 are divided into at most 2k + 1
segments, each of which potentially increases the number of regions by one (being part
of the common boundary of two parts, one of which is counted in ak).

But if a side of Qk+1 intersects the boundary of each Qj, 1 ≤ j ≤ k twice, then its
endpoints (vertices of Qk+1) are in the region outside of all the Qj’s, and the segments
meeting at such a vertex are on the boundary of a single new part (recall that it makes
no sense to put vertices on edges of another quadrilaterals). This means that ak+1 − ak ≤
4(2k + 1)− 4 = 8k. By considering squares inscribed in a circle one easily sees that the
situation where ak+1 − ak = 8k can be reached.

It remains to determine the expression for the maximal ak. Since the difference
ak+1− ak is linear in k, ak is a quadratic polynomial in k, and a0 = 2. So ak = Ak2 + Bk+ 2.
We have 8k = ak+1 − ak = A(2k + 1) + B for all k. This implies A = 4, B = −4, and
an = 4n2 − 4n + 2.

02.8. Let P be a set of n ≥ 3 points in the plane, no three of which are on a line. How many
possibilities are there to choose a set T of (n−1

2 ) triangles, whose vertices are all in P, such that
each triangle in T has a side that is not a side of any other triangle in T?
Answer: There is one possibility for n = 3 and n possibilities for n ≥ 4.
Solution: For a fixed point x ∈ P, let Tx be the set of all triangles with vertices in P
which have x as a vertex. Clearly, |Tx| = (n−1

2 ), and each triangle in Tx has a side which is
not a side of any other triangle in Tx. For any x, y ∈ P such that x 6= y, we have Tx 6= Ty
if and only if n ≥ 4. We will show that any possible set T is equal to Tx for some x ∈ P,
that is, that the answer is 1 for n = 3 and n for n ≥ 4.
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Let

T =
{

ti | i = 1, 2, . . . , (n−1
2 )
}

S =
{

si | i = 1, 2, . . . , (n−1
2 )
}

such that T is a set of triangles whose vertices are all in P, and si is a side of ti but not of
any tj, j 6= i. Furthermore, let C be the collection of all the (n

3) triangles whose vertices
are in P. Note that

|C /T| = (n
3)− (n−1

2 ) = (n−1
3 ).

Let m be the number of pairs (s, t) such that s ∈ S is a side of t ∈ C /T. Since every
s ∈ S is a side of exactly n− 3 triangles from C /T, we have

m = |S| · (n− 3) = (n−1
2 ) · (n− 3) = 3 · (n−1

3 ) = 3 · |C /T|.

On the other hand, every t ∈ C /T has at most three sides from S. By the above equality,
for every t ∈ C /T, all its sides must be in S.

Assume that for p ∈ P there is a side s ∈ S such that p is an endpoint of s. Then p is
also a vertex of each of the n− 3 triangles in C /T which have s as a side. Consequently,
p is an endpoint of n− 2 sides in S. Since every side in S has exactly 2 endpoints, the
number of points p ∈ P which occur as a vertex of some s ∈ S is

2 · |S|
n− 2

=
2

n− 2
·
(

n− 1
2

)
= n− 1.

Consequently, there is an x ∈ P which is not an endpoint of any s ∈ S, and hence T must
be equal to Tx.
02.9. Two magicians show the following trick. The first magician goes out of the room. The second
magician takes a deck of 100 cards labelled by numbers 1, 2, . . . , 100 and asks three spectators to
choose in turn one card each. The second magician sees what card each spectator has taken. Then
he adds one more card from the rest of the deck. Spectators shuffle these four cards, call the first
magician and give him these four cards. The first magician looks at the four cards and “guesses”
what card was chosen by the first spectator, what card by the second and what card by the third.
Prove that the magicians can perform this trick.
Solution: We will identify ourselves with the second magician. Then we need to choose
a card in such a manner that another magician will be able to understand which of the
four cards we have chosen and what information it gives about the order of the other
cards. We will reach these two goals independently.

Let a, b, c be the remainders of the labels of the spectators’ three cards modulo 5.
There are three possible cases.
(1) All the three remainders coincide. Then choose a card with a remainder not equal to the
remainder of the spectators’ cards. Denote this remainder d.

Note that we now have two different remainders, one of them in three copies (this will be
used by the first magician to distinguish between the three cases). To determine which
of the cards is chosen by us is now a simple exercise in division by 5. But we must also
encode the ordering of the spectators’ cards. These cards have a natural ordering by
their labels, and they are also ordered by their belonging to the spectators. Thus, we
have to encode a permutation of three elements. There are six permutations of three
elements, let us enumerate them somehow. Then, if we want to inform the first magician
that spectators form a permutation number k with respect to the natural ordering, we
choose the card number 5k + d.



Solutions · 2002 21

(2) The remainders a, b, c are pairwise different. Then it is clear that, modulo 5, exactly one
of the following possibilities takes place:

|b− a| ≡ |a− c|, |a− b| ≡ |b− c|, or |a− c| ≡ |c− b| (02.9)

It is not hard to prove this by a case study, but one could also imagine choosing three
vertices of a regular pentagon – these vertices always form an isosceles, but not an
equilateral triangle.

Each of these possibilities has one of the remainders distinguished from the other
two remainders (these distinguished remainders are a, b, c, respectively). Now, choose a
card from the rest of the deck having the distinguished remainder modulo 5. Hence, we
have three different remainders, one of them distinguished by (02.9) and presented in two copies.
Let d be the distinguished remainder and s = 5m + d be the spectator’s card with this
remainder.

Now we have to choose a card r with the remainder d such that the first magician
would be able to understand which of the cards s and r was chosen by us and what
permutation of the spectators it implies. This can be done easily: If we want to inform
the first magician that the spectators form a permutation number k with respect to the
natural ordering, we choose the card number s + 5k (mod 100).

The decoding procedure is easy: If we have two numbers p and q that have the
same remainder modulo 5, calculate p − q mod 100 and q − p mod 100. If p − q
mod 100 > q− p mod 100 then r = q is our card and s = p is the spectator’s card. (The
case p− q mod 100 = q− p mod 100 is impossible since the sum of these numbers is
equal to 100, and one of them is not greater than 6 · 5 = 30.)
(3) Two remainders (say, a and b) coincide. Let us choose a card with the remainder
d = (a + c)/2 mod 5. Then |a− d| = |d− c| mod 5, so the remainder d is distinguished
by (02.9). Hence we have three different remainders, one of them distinguished by (02.9) and
one of the non-distinguished remainders presented in two copies. The first magician will easily
determine our card, and the rule to choose the card in order to enable him also determine
the order of spectators is similar to the one in the first case.
Solution 2: This solution gives a non-constructive proof that the trick is possible. For
this, we need to show there is an injective mapping from the set of ordered triples to the
set of unordered quadruples that additionally respects inclusion.

To prove that the desired mapping exists, let’s consider a bipartite graph such that
the set of ordered triples T and the set of unordered quadruples Q form the two disjoint
sets of vertices and there is an edge between a triple and a quadruple if and only if the
triple is a subset of the quadruple.

For each triple t ∈ T, we can add any of the remaining 97 cards to it, and thus we
have 97 different quadruples connected to each triple in the graph. Conversely, for each
quadruple q ∈ Q, we can remove any of the four cards from it, and reorder the remaining
three cards in 3! = 6 different ways, and thus we have 24 different triples connected to
each quadruple in the graph.

According to the Hall’s theorem, a bipartite graph (T, Q, E) has a perfect matching if
and only if for each subset T′ ⊆ T the set of neighbours of T′, denoted N(T′), satisfies
|N(T′)| ≥ |T′|.

To prove that this condition holds for our graph, consider any subset T′ ⊆ T. Because
we have 97 quadruples for each triple, and there can be at most 24 copies of each of them
in the multiset of neighbours, we have |N(T′)| ≥ 97

24 |T′| > 4|T′|, which is even much
more than we need. Thus, the desired mapping is guaranteed to exist.
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Solution 3: Let the three chosen numbers be (x1, x2, x3). At least one of the sets
{1, 2, . . . , 24}, {25, 26, . . . , 48}, {49, 50, . . . , 72} and {73, 74, . . . , 96} contains none of x1,
x2, x3; let S be such set. We split S into six parts S = S1 ∪ S2 ∪ · · · ∪ S6 so that the first
four elements of S are in S1, the four next in S2, etc. Now we choose i ∈ {1, 2, . . . , 6}
corresponding to the lexicographic order of the numbers x1, x2, x3 (if x1 < x2 < x3 then
i = 1, if x1 < x3 < x2 then i = 2, . . . , if x3 < x2 < x1 then i = 6). At last let j be the
number of elements in {x1, x2, x3} that are greater than elements of S (note that any xk,
k = 1, 2, 3, is either greater or smaller than all the elements of S). Now we choose x4 ∈ Si
so that x1 + x2 + x3 + x4 ≡ j (mod 4) and add the card number x4 to those three cards.

Decoding of {a, b, c, d} is straightforward. We first put the numbers into increasing
order and then calculate a + b + c + d mod 4 showing the added card. The added card
belongs to some Si (i ∈ {1, 2, . . . , 6}) for some S and i shows us the initial ordering of
cards.

02.10. Let N be a positive integer. Two persons play the following game. The first player writes
a list of positive integers not greater than 25, not necessarily different, such that their sum is
at least 200. The second player wins if he can select some of these numbers so that their sum S
satisfies the condition 200− N ≤ S ≤ 200 + N. What is the smallest value of N for which the
second player has a winning strategy?
Answer: N = 11.
Solution: If N = 11, then the second player can simply remove numbers from the list,
starting with the smallest number, until the sum of the remaining numbers is less than 212.
If the last number removed was not 24 or 25, then the sum of the remaining numbers is
at least 212− 23 = 189. If the last number removed was 24 or 25, then only 24’s and 25’s
remain, and there must be exactly 8 of them since their sum must be less than 212 and
not less than 212− 24 = 188. Hence their sum S satisfies 8 · 24 = 192 ≤ S ≤ 8 · 25 = 200.
In any case the second player wins.

On the other hand, if N ≤ 10, then the first player can write 25 two times and 23
seven times. Then the sum of all numbers is 211, but if at least one number is removed,
then the sum of the remaining ones is at most 188 – so the second player cannot win.

02.11. Let n be a positive integer. Consider n points in the plane such that no three of them are
collinear and no two of the distances between them are equal. One by one, we connect each point
to the two points nearest to it by line segments (if there are already other line segments drawn to
this point, we do not erase these). Prove that there is no point from which line segments will be
drawn to more than 11 points.
Solution: Suppose there exists a point A such that A is connected to 12 points. Then there
exist three points B, C and D such that ∠BAC ≤ 60◦, ∠BAD ≤ 60◦ and ∠CAD ≤ 60◦.

We can assume that AD > AB and AD > AC. By the cosine law we have

BD2 = AD2 + AB2 − 2ADAB cos∠BAD

< AD2 + AB2 − 2AB2 cos∠BAD

= AD2 + AB2(1− 2 cos∠BAD)

≤ AD2

since 1 ≤ 2 cos(∠BAD). Hence BD < AD. Similarly we get CD < AD. Hence A and D
should not be connected which is a contradiction.
Remark: It would be interesting to know whether 11 can be achieved or the actual bound
is lower.
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02.12. A set S of four distinct points is given in the plane. It is known that for any point X ∈ S
the remaining points can be denoted by Y, Z and W so that

XY = XZ + XW.

Prove that all the four points lie on a line.
Solution: Let S = {A, B, C, D} and let AB be the longest of the six segments formed by
these four points (if there are several longest segments, choose any of them). If we choose
X = A then we must also choose Y = B. Indeed, if we would, for example, choose
Y = C, we should have AC = AB + AD contradicting the maximality of AB. Hence we
get

AB = AC + AD. (02.10)

Similarly, choosing X = B we must choose Y = A and we obtain

AB = BC + BD. (02.11)

On the other hand, from the triangle inequality we know that

AB ≤ AC + BC,
AB ≤ AD + BD,

where at least one of the inequalities is strict if all the four points are not on the same
line. Hence, adding the two last inequalities we get

2AB < AC + BC + AD + BD.

On the other hand, adding (02.10) and (02.11) we get

2AB = AC + AD + BC + BD;

a contradiction.
02.13. Let ABC be an acute triangle with ∠BAC > ∠BCA, and let D be a point on the side AC
such that AB = BD. Furthermore, let F be a point on the circumcircle of triangle ABC such that
the line FD is perpendicular to the side BC and points F, B lie on different sides of the line AC.
Prove that the line FB is perpendicular to the side AC.
Solution: Let E be the other point on the circumcircle of triangle ABC such that AB = EB.
Let D′ be the point of intersection of side AC and the line perpendicular to side BC,
passing through E. Then ∠ECB = ∠BCA and the triangle ECD′ is isosceles. As
ED′ ⊥ BC, the triangle BED′ is also isosceles and BE = BD′ implying D = D′. Hence,
the points E, D, F lie on one line. We now have

∠EFB +∠FDA = ∠BCA +∠EDC = 90◦.

The required result now follows.

A

B

CD

E

F
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02.14. Let L, M and N be points on sides AC, AB and BC of triangle ABC, respectively, such
that BL is the bisector of angle ABC and segments AN, BL and CM have a common point.
Prove that if ∠ALB = ∠MNB then ∠LNM = 90◦.
Solution: Let P be the intersection point of lines MN and AC. Then ∠PLB = ∠PNB
and the quadrangle PLNB is cyclic. Let ω be its circumcircle. It is sufficient to prove that
PL is a diameter of ω.

Let Q denote the second intersection point of the line AB and ω. Then ∠PQB = ∠PLB
and

∠QPL = ∠QBL = ∠LBN = ∠LPN,

and the triangles PAQ and BAL are similar. Therefore,

PQ
PA

=
BL
BA

. (02.12)

We see that the line PL is a bisector of the inscribed angle NPQ. Now in order to
prove that PL is a diameter of ω it is sufficient to check that PN = PQ.

The triangles NPC and LBC are similar, hence

PN
PC

=
BL
BC

. (02.13)

Note also that

AB
BC

=
AL
CL

. (02.14)

by the properties of a bisector. Combining (02.12), (02.13) and (02.14) we have

PN
PQ

=
AL
AP
· CP

CL
.

We want to prove that the left-hand side of this equality equals 1. This follows from the
fact that the quadruple of points (C, A, L, P) is harmonic, as can be proven using standard
methods (for example by considering the quadrilateral MBNS, where S = MC ∩ AN).

A

B

C
L

M

N

P

Q

ω

02.15. A spider and a fly are sitting on a cube. The fly wants to maximize the shortest path to the
spider along the surface of the cube. Is it necessarily best for the fly to be at the point opposite to
the spider? (“Opposite” means “symmetric with respect to the centre of the cube”.)
Answer: No.
Solution: Suppose that the side of the cube is 1 and the spider sits at the middle of one
of the edges. Then the shortest path to the middle of the opposite edge has length 2.
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However, if the fly goes to a point on this edge at distance s from the middle, then the
length of the shortest path is

min
(√

4 + s2,
√

9
4 +

(3
2− s

)2
)

.

If 0 < s < (3−
√

7)/2, then this expression is greater than 2.
02.16. Find all nonnegative integers m such that

am =
(

22m+1
)2

+ 1

is divisible by at most two different primes.
Solution: Obviously m = 0, 1, 2 are solutions as a0 = 5, a1 = 65 = 5 · 13, and a2 = 1025 =
25 · 41. We show that these are the only solutions.

Assume that m ≥ 3 and that am contains at most two different prime factors. Clearly,
am = 42m+1 + 1 is divisible by 5, and

am =
(
22m+1 + 2m+1 + 1

)
·
(
22m+1 − 2m+1 + 1

)
.

The two above factors are relatively prime as they are both odd and their difference is
a power of 2. Since both factors are larger than 1, one of them must be a power of 5.
Hence,

2m+1 ·
(
2m ± 1

)
= 5t − 1 = (5− 1) · (1 + 5 + · · ·+ 5t−1)

for some positive integer t, where ± reads as either plus or minus. For odd t the right-hand
side is not divisible by 8, contradicting m ≥ 3. Therefore, t must be even and

2m+1 ·
(
2m ± 1

)
= (5t/2 − 1) · (5t/2 + 1).

Clearly, 5t/2 + 1 ≡ 2 (mod 4). Consequently, 5t/2 − 1 = 2m · k for some odd k, and
5t/2 + 1 = 2m · k + 2 divides 2(2m ± 1), that is,

2m−1 · k + 1 | 2m ± 1.

This implies k = 1, finally leading to a contradiction since

2m−1 + 1 < 2m ± 1 < 2(2m−1 + 1)

for m ≥ 3.
02.17. Show that the sequence (

2002
2002

)
,
(

2003
2002

)
,
(

2004
2002

)
, . . . ,

considered modulo 2002, is periodic.
Solution: Define

xk
n = (n

k)

and note that

xk
n+1 − xk

n = (n+1
k )− (n

k) = ( n
k−1) = xk−1

n .
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Let m be any positive integer. We will prove by induction on k that the sequence {xk
n}∞

n=k
is periodic modulo m. For k = 1 it is obvious that xk

n = n is periodic modulo m with
period m. Therefore it will suffice to show that the following is true: A sequence {xn} is
periodic modulo m if its difference sequence, dn = xn+1 − xn, is periodic modulo m.

Indeed, let t be the period of {dn} and h be the smallest positive integer such that
h(xt − x0) ≡ 0 (mod m). Then

xn+ht = x0 +
n+ht−1

∑
j=0

dj ≡ x0 +
n−1

∑
j=0

dj + h
t−1

∑
j=0

dj

= xn + h(xt − x0) ≡ xn (mod m)

for all n, so the sequence {xn} is in fact periodic modulo m (with a period dividing ht).
02.18. Find all integers n > 1 such that any prime divisor of n6− 1 is a divisor of (n3− 1)(n2−
1).
Answer: Only n = 2.
Solution: Consider the equality

n6 − 1 = (n2 − n + 1)(n + 1)(n3 − 1).

The integer n2 − n + 1 = n(n − 1) + 1 clearly has an odd divisor p. Then p | n3 + 1.
Therefore, p does not divide n3 − 1 and consequently p | n2 − 1. This implies that p
divides (n3 + 1) + (n2 − 1) = n2(n + 1).

As p does not divide n, we obtain p | n + 1. Also, p | (n2 − 1)− (n2 − n + 1) = n− 2.
From p | n + 1 and p | n− 2 it follows that p = 3, so n2 − n + 1 = 3r for some positive
integer r.

The discriminant of the quadratic n2 − n + (1− 3r) must be a square of an integer,
hence

1− 4(1− 3r) = 3(4 · 3r−1 − 1)

must be a square of an integer. Since for r ≥ 2 the number 4 · 3r−1 − 1 is not divisible
by 3, this is possible only if r = 1. So n2 − n− 2 = 0 and n = 2.
02.19. Let n be a positive integer. Prove that the equation

x + y + 1
x + 1

y = 3n

does not have solutions in positive rational numbers.
Solution: Suppose x = p

q and y = r
s satisfy the given equation, where p, q, r, s are positive

integers and gcd(p, q) = gcd(r, s) = 1. We have
p
q
+

r
s
+

q
p
+

s
r
= 3n,

or
(p2 + q2)rs + (r2 + s2)pq = 3npqrs,

so rs | (r2 + s2)pq. Since gcd(r, s) = 1, we have gcd(r2 + s2, rs) = 1 and rs | pq.
Analogously pq | rs, so rs = pq and hence there are either two or zero integers divisible
by 3 among p, q, r, s. Now we have

(p2 + q2)rs + (r2 + s2)rs = 3n(rs)2,

p2 + q2 + r2 + s2 = 3nrs,

but 3nrs ≡ 0 (mod 3) and p2 + q2 + r2 + s2 is congruent to either 1 or 2 modulo 3, a
contradiction.
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02.20. Does there exist an infinite non-constant arithmetic progression, each term of which is of
the form ab, where a and b are positive integers with b ≥ 2?
Answer: No.
Solution: For an arithmetic progression a1, a2, . . . with difference d the following holds:

Sn =
1
a1

+
1
a2

+ · · ·+ 1
an+1

=
1
a1

+
1

a1 + d
+ · · ·+ 1

a1 + nd

≥ 1
m

(1
1
+

1
2
+ · · ·+ 1

n + 1

)
,

where m = max(a1, d). Therefore Sn tends to infinity when n increases.
On the other hand, the sum of reciprocals of the powers of a natural number x 6= 1 is

1
x2 +

1
x3 + · · · =

1
x2

1− 1
x

=
1

x(x− 1)
.

Hence, the sum of reciprocals of the terms of the progression required in the problem
cannot exceed

1
1
+

1
1 · 2 +

1
2 · 3 + · · · = 1 +

(1
1
− 1

2
+

1
2
− 1

3
+ · · ·

)
= 2,

a contradiction.
Solution 2: Let ak = a0 + dk, k = 0, 1, . . .. Choose a prime number p > d and set
k′ ≡ (p− a0)d−1 (mod p2). Then ak′ = a0 + k′d ≡ p (mod p2) and hence, ak′ can not be
a power of a natural number.
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03.1. Let Q+ be the set of positive rational numbers. Find all functions f : Q+ → Q+ which for
all x ∈ Q+ fulfil

(1) f ( 1
x ) = f (x)

(2) (1 + 1
x ) f (x) = f (x + 1)

Solution: Set g(x) = f (x)
f (1) . Function g fulfils (1), (2) and g(1) = 1. First we prove that if

g exists then it is unique. We prove that g is uniquely defined on x = p
q by induction

on max(p, q). If max(p, q) = 1 then x = 1 and g(1) = 1. If p = q then x = 1 and g(x)
is unique. If p 6= q then we can assume (according to (1)) that p > q. From (2) we get
g( p

q ) = (1 + q
p−q )g( p−q

q ). The induction assumption and max(p, q) > max(p− q, q) ≥ 1
now give that g( p

q ) is unique.
Define the function g by g( p

q ) = pq where p and q are chosen such that gcd(p, q) = 1.
It is easily seen that g fulfils (1), (2) and g(1) = 1. All functions fulfilling (1) and (2) are
therefore f ( p

q ) = apq, where gcd(p, q) = 1 and a ∈ Q+.

03.2. Prove that any real solution of

x3 + px + q = 0

satisfies the inequality 4qx ≤ p2.
Solution: Let x0 be a root of the qubic, then x3 + px + q = (x − x0)(x2 + ax + b) =
x3 + (a− x0)x2 + (b− ax0)x− bx0. So a = x0, p = b− ax0 = b− x2

0, −q = bx0. Hence
p2 = b2 − 2bx2

0 + x4
0. Also 4x0q = −4x2

0b. So p2 − 4x0q = b2 + 2bx2
0 + x4

0 = (b + x2
0)

2 ≥ 0.
Solution 2: As the equation x0x2 + px + q = 0 has a root (x = x0), we must have
D ≥ 0 ⇔ p2 − 4qx0 ≥ 0. (Also the equation x2 + px + qx0 = 0 having the root x = x2

0
can be considered.)
03.3. Let x, y and z be positive real numbers such that xyz = 1. Prove that

(1 + x)(1 + y)(1 + z) ≥ 2
(
1 + 3

√
y
x
+ 3

√
z
y
+ 3

√
x
z
)
.

Solution: Put a = bx, b = cy and c = az. The given inequality then takes the form(
1 +

a
b

)(
1 +

b
c

)(
1 +

c
a

)
≥ 2

(
1 + 3

√
b2

ac
+

3

√
c2

ab
+

3

√
a2

bc

)
= 2

(
1 +

a + b + c
3 3
√

abc

)
.

By the AM-GM inequality we have(
1 +

a
b

)(
1 +

b
c

)(
1 +

c
a

)
=

a + b + c
a

+
a + b + c

b
+

a + b + c
c

− 1

≥ 3
( a + b + c

3
√

abc

)
− 1

≥ 2
a + b + c

3
√

abc
+ 3− 1

= 2
(

1 +
a + b + c

3
√

abc

)
.
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Solution 2: Expanding the left side we obtain

x + y + z + 1
x + 1

y +
1
z ≥ 2

(
3
√

y
x + 3

√
z
y +

3
√

x
z

)
.

As 3
√

y
x ≤

1
3

(
y + 1

x + 1
)

etc., it suffices to prove that

x + y + z + 1
x + 1

y +
1
z ≥

2
3

(
x + y + z + 1

x + 1
y +

1
z

)
+ 2,

which follows from a + 1
a ≥ 2.

03.4. Let a, b, c be positive real numbers. Prove that

2a
a2 + bc

+
2b

b2 + ca
+

2c
c2 + ab

≤ a
bc

+
b
ca

+
c

ab
.

Solution: First we prove that

2a
a2 + bc

≤ 1
2

(1
b
+

1
c

)
,

which is equivalent to 0 ≤ b(a− c)2 + c(a− b)2, and therefore holds true. Now we turn
to the inequality

1
b
+

1
c
≤ 1

2

(2a
bc

+
b
ca

+
c

ab

)
,

which by multiplying by 2abc is seen to be equivalent to 0 ≤ (a− b)2 + (a− c)2. Hence
we have proved that

2a
a2 + bc

≤ 1
4

(2a
bc

+
b
ca

+
c

ab

)
.

Analogously we have
2b

b2 + ca
≤ 1

4

(2b
ca

+
c

ab
+

a
bc

)
,

2c
c2 + ab

≤ 1
4

(2c
ab

+
a
bc

+
b
ca

)
and it suffices to sum the above three inequalities.

Solution 2: As a2 + bc ≥ 2a
√

bc etc., it is sufficient to prove that
1√
bc

+
1√
ac

+
1√
ab
≤ a

bc
+

b
ca

+
c

ab
,

which can be obtained by “inserting” 1
a +

1
b +

1
c between the left side and the right side.

03.5. A sequence (an) is defined as follows: a1 =
√

2, a2 = 2, and an+1 = ana2
n−1 for n ≥ 2.

Prove that for every n ≥ 1 we have

(1 + a1)(1 + a2) · · · (1 + an) < (2 +
√

2)a1a2 · · · an.

Solution: First we prove inductively that for n ≥ 1, an = 22n−2
. We have a1 = 22−1

,
a2 = 220

and

an+1 = 22n−2 · (22n−3
)2 = 22n−2 · 22n−2

= 22n−1
.
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Since 1 + a1 = 1 +
√

2, we must prove, that

(1 + a2)(1 + a3) · · · (1 + an) < 2a2a3 · · · an.

The right-hand side is equal to

21+20+21+···+2n−2
= 22n−1

and the left-hand side

(1 + 220
)(1 + 221

) · · · (1 + 22n−2
)

= 1 + 220
+ 221

+ 220+21
+ 222

+ · · ·+ 220+21+···+2n−2

= 1 + 2 + 22 + 23 + · · ·+ 22n−1−1

= 22n−1 − 1.

The proof is complete.

03.6. Let n ≥ 2 and d ≥ 1 be integers with d | n, and let x1, x2, . . . , xn be real numbers
such that x1 + x2 + · · · + xn = 0. Prove that there are at least (n−1

d−1) choices of d indices
1 ≤ i1 < i2 < · · · < id ≤ n such that xi1 + xi2 + · · ·+ xid ≥ 0.
Solution: Put m = n/d and [n] = {1, 2, . . . , n}, and consider all partitions [n] = A1 ∪
A2 ∪ · · · ∪ Am of [n] into d-element subsets Ai, i = 1, 2, . . . , m. The number of such
partitions is denoted by t. Clearly, there are exactly (n

d) d-element subsets of [n] each
of which occurs in the same number of partitions. Hence, every A ⊆ [n] with |A| = d
occurs in exactly s := tm/(n

d) partitions. On the other hand, every partition contains at
least one d-element set A such that ∑i∈A xi ≥ 0. Consequently, the total number of sets
with this property is at least t/s = (n

d)/m = d
n (

n
d) = (n−1

d−1).

03.7. Let X be a subset of {1, 2, 3, . . . , 10000} with the following property: If a, b ∈ X, a 6= b,
then a · b /∈ X. What is the maximal number of elements in X?
Answer: 9901.
Solution: If X = {100, 101, 102, . . . , 9999, 10000}, then for any two selected a and b, a 6= b,
a · b ≥ 100 · 101 > 10000, so a · b 6∈ X. So X may have 9901 elements.

Suppose that x1 < x2 < · · · < xk are all elements of X that are less than 100. If there
are none of them, no more than 9901 numbers can be in the set X. Otherwise, if x1 = 1
no other number can be in the set X, so suppose x1 > 1 and consider the pairs

200− x1, (200− x1) · x1

200− x2, (200− x2) · x2

...
200− xk, (200− xk) · xk

Clearly x1 < x2 < · · · < xk < 100 < 200 − xk < 200 − xk−1 < · · · < 200 − x2 <
200− x1 < 200 < (200− x1) · x1 < (200− x2) · x2 < · · · < (200− xk) · xk. So all numbers
in these pairs are different and greater than 100. So at most one from each pair is in the
set X. Therefore, there are at least k numbers greater than 100 and 99− k numbers less
than 100 that are not in the set X, together at least 99 numbers out of 10000 not being in
the set X.
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03.8. There are 2003 pieces of candy on a table. Two players alternately make moves. A move
consists of eating one candy or half of the candies on the table (the “lesser half” if there is an odd
number of candies); at least one candy must be eaten at each move. The loser is the one who eats
the last candy. Which player – the first or the second – has a winning strategy?
Answer: The second.
Solution: Let us prove inductively that for 2n pieces of candy the first player has a
winning strategy. For n = 1 it is obvious. Suppose it is true for 2n pieces, and let’s
consider 2n + 2 pieces. If for 2n + 1 pieces the second is the winner, then the first eats
1 piece and becomes the second in the game starting with 2n + 1 pieces. So suppose
that for 2n + 1 pieces the first is the winner. His winning move for 2n + 1 is not eating 1
piece (according to the inductive assumption). So his winning move is to eat n pieces,
leaving the second with n + 1 pieces, when the second must lose. But the first can leave
the second with n + 1 pieces from the starting position with 2n + 2 pieces, eating n + 1
pieces; so 2n + 2 is a winning position for the first.

Now if there are 2003 pieces of candy on the table, the first must eat either 1 or 1001
candies, leaving an even number of candies on the table. So the second player will be the
first player in a game with even number of candies and therefore has a winning strategy.

In general, if there is an odd number N of candies, write N = 2mr + 1, where r is
odd. Then the first player wins if m is even, and the second player wins if m is odd: At
each move, the player must avoid leaving the other with an even number of candies, so
he must eat half of the candies. But this means that the number of candies descend as
2mr + 1, 2m−1r + 1, . . . , 2r + 1, r + 1, and eventually there is an even number of candies.

03.9. It is known that n is a positive integer, n ≤ 144. Ten questions of type “Is n smaller than
a?” are allowed. Answers are given with a delay: The answer to the i’th question is given only
after the (i + 1)’st question is asked, i = 1, 2, . . . , 9. The answer to the tenth question is given
immediately after it is asked. Find a strategy for identifying n.
Solution: Let the Fibonacci numbers be denoted F0 = 1, F1 = 2, F2 = 3 etc. Then
F10 = 144. We will prove by induction on k that using k questions subject to the
conditions of the problem, it is possible to determine any positive integer n ≤ Fk. First,
for k = 0 it is trivial, since without asking we know that n = 1. For k = 1, we simply ask
if n is smaller than 2. For k = 2, we ask if n is smaller than 3 and if n is smaller than 2;
from the two answers we can determine n.

Now, in general, our first two questions will always be “Is n smaller than Fk−1 + 1?”
and “Is n smaller than Fk−2 + 1”. We then receive the answer to the first question. As long
as we receive affirmative answers to the i− 1’st question, the i + 1’st question will be “Is
n smaller than Fk−(i+1) + 1?”. If at any point, say after asking the j’th question, we receive
a negative answer to the j− 1’st question, we then know that Fk−(j−1) + 1 ≤ n ≤ Fk−(j−2),
so n is one of Fk−(j−2) − Fk−(j−1) = Fk−j consecutive integers, and by induction we may
determine n using the remaining k − j questions. Otherwise, we receive affirmative
answers to all the questions, the last being “Is n smaller than Fk−k + 1 = 2?”; so n = 1 in
that case.

03.10. A lattice point in the plane is a point whose coordinates are both integral. The centroid
of four points (xi, yi), i = 1, 2, 3, 4, is the point ( x1+x2+x3+x4

4 , y1+y2+y3+y4
4 ). Let n be the largest

natural number with the following property: There are n distinct lattice points in the plane such
that the centroid of any four of them is not a lattice point. Prove that n = 12.
Solution: To prove n ≥ 12, we have to show that there are 12 lattice points (xi, yi),
i = 1, 2, . . . , 12, such that no four determine a lattice point centroid. This is guaranteed if
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we just choose the points such that xi ≡ 0 (mod 4) for i = 1, . . . , 6, xi ≡ 1 (mod 4) for
i = 7, . . . , 12, yi ≡ 0 (mod 4) for i = 1, 2, 3, 10, 11, 12, yi ≡ 1 (mod 4) for i = 4, . . . , 9.

Now let Pi, i = 1, 2, . . . , 13, be lattice points. We have to show that some four of
them determine a lattice point centroid. First observe that, by the Pigeonhole Principle,
among any five of the points we find two such that their x-coordinates as well as their
y-coordinates have the same parity. Consequently, among any five of the points there are
two whose midpoint is a lattice point. Iterated application of this observation implies
that among the 13 points in question we find five disjoint pairs of points whose midpoint
is a lattice point. Among these five midpoints we again find two, say M and M′, such
that their midpoint C is a lattice point. Finally, if M and M′ are the midpoints of PiPj
and PkP`, respectively, {i, j, k, `} ⊆ {1, 2, . . . , 13}, then C is the centroid of Pi, Pj, Pk, P`.
03.11. Is it possible to select 1000 points in a plane so that at least 6000 distances between two of
them are equal?
Answer: Yes.
Solution: Let’s start with configuration of 4 points and 5 distances equal to d, like in this
figure:

(α)
d

Now take (α) and two copies of it obtainable by parallel shifts along vectors ~a and
~b, |~a| = |~b| = d and ∠(~a,~b) = 60◦. Vectors ~a and ~b should be chosen so that no two
vertices of (α) and of the two copies coincide. We get 3 · 4 = 12 points and 3 · 5 + 12 = 27
distances. Proceeding in the same way, we get gradually

• 3 · 12 = 36 points and 3 · 27 + 36 = 117 distances;
• 3 · 36 = 108 points and 3 · 117 + 108 = 459 distances;
• 3 · 108 = 324 points and 3 · 459 + 324 = 1701 distances;
• 3 · 324 = 972 points and 3 · 1701 + 972 = 6075 distances.

03.12. Let ABCD be a square. Let M be an inner point on side BC and N be an inner point on
side CD with ∠MAN = 45◦. Prove that the circumcentre of AMN lies on AC.
Solution: Draw a circle ω through M, C, N; let it intersect AC at O. We claim that O is
the circumcentre of AMN.

Clearly ∠MON = 180◦ − ∠MCN = 90◦. If the radius of ω is R, then OM =
2R sin 45◦ = R

√
2; similarly ON = R

√
2. Hence we get that OM = ON. Then the circle

with centre O and radius R
√

2 will pass through A, since ∠MAN = 1
2∠MON.

A

B C

D

M

N
O

ω

03.13. Let ABCD be a rectangle and BC = 2 · AB. Let E be the midpoint of BC and P an
arbitrary inner point of AD. Let F and G be the feet of perpendiculars drawn correspondingly
from A to BP and from D to CP. Prove that the points E, F, P, G are concyclic.
Solution: From rectangular triangle BAP we have BP · BF = AB2 = BE2. Therefore the
circumference through F and P touching the line BC between B and C touches it at E.
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Analogously, the circumference through P and G touching the line BC between B and
C touches it at E. But there is only one circumference touching BC at E and passing
through P.

A

B C

D

E

P

F

G

03.14. Let ABC be an arbitrary triangle and AMB, BNC, CKA regular triangles outward of
ABC. Through the midpoint of MN a perpendicular to AC is constructed; similarly through the
midpoints of NK resp. KM perpendiculars to AB resp. BC are constructed. Prove that these three
perpendiculars intersect at the same point.
Solution: Let O be the midpoint of MN, and let E and F be the midpoints of AB and BC,
respectively. As triangle MBC transforms into triangle ABN when rotated 60◦ around B
we get MC = AN (it is also a well-known fact). Considering now the quadrangles AMBN
and CMBN we get OE = OF (from Eiler’s formula a2 + b2 + c2 + d2 = e2 + f 2 + 4 · PQ2

or otherwise). As EF ‖ AC we get from this that the perpendicular to AC through O
passes through the circumcentre of EFG, as it is the perpendicular bisector of EF. The
same holds for the other two perpendiculars.

A

B

C

E F

G

M

N
O

A

B

C

M

N

K

A1

B1

C1

First solution Second solution
Solution 2: Let us denote the midpoints of the segments MN, NK, KM by B1, C1, A1,
respectively. It is easy to see that triangle A1B1C1 is homothetic to triangle NKM via
the homothety centered at the intersection of the medians of triangle NMK and dilation
− 1

2 . The perpendiculars through M, N, K to AB, BC, CA, respectively, are also the
perpendicular bisectors of these sides, so they intersect in the circumcentre of triangle
ABC. The desired result follows now from the homothety, and we find that that the
common point of intersection is the circumcentre of the image of triangle ABC under the
homothety; that is, the circumcentre of the triangle with vertices the midpoints of the
sides AB, BC, CA.

03.15. Let P be the intersection point of the diagonals AC and BD in a cyclic quadrilateral. A
circle through P touches the side CD in the midpoint M of this side and intersects the segments
BD and AC in the points Q and R, respectively. Let S be a point on the segment BD such that
BS = DQ. The parallel to AB through S intersects AC at T. Prove that AT = RC.
Solution: With reference to the figure below we have CR ·CP = DQ ·DP = CM2 = DM2,
which is equivalent to RC = DQ·DP

CP . We also have AT
BS = AP

BP = AT
DQ , so AT = AP·DQ

BP . Since
ABCD is cyclic the result now comes from the fact that DP · BP = AP · CP (due to a
well-known theorem).
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A
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C

D

P

Q

R
S

T

M

03.16. Find all pairs of positive integers (a, b) such that a− b is a prime and ab is a perfect
square.
Answer: Pairs (a, b) = (( p+1

2 )2, ( p−1
2 )2), where p is a prime greater than 2.

Solution: Let p be a prime such that a− b = p and let ab = k2. Insert a = b + p in the
equation ab = k2. Then

k2 = (b + p)b = (b +
p
2
)2 − p2

4

which is equivalent to

p2 = (2b + p)2 − 4k2 = (2b + p + 2k)(2b + p− 2k).

Since 2b + p + 2k > 2b + p − 2k and p is a prime, we conclude 2b + p + 2k = p2

and 2b + p − 2k = 1. By adding these equations we get 2b + p = p2+1
2 and then

b = ( p−1
2 )2, so a = b + p = ( p+1

2 )2. By checking we conclude that all the solutions are
(a, b) = (( p+1

2 )2, ( p−1
2 )2) with p a prime greater than 2.

Solution 2: Let p be a prime such that a− b = p and let ab = k2. We have (b + p)b = k2,
so gcd(b, b + p) = gcd(b, p) is equal either to 1 or p. If gcd(b, b + p) = p, let b = b1 p.
Then p2b1(b1 + 1) = k2, b1(b1 + 1) = m2, but this equation has no solutions.

Hence gcd(b, b + p) = 1, and

b = u2 b + p = v2

so that p = v2 − u2 = (v + u)(v− u). This in turn implies that v− u = 1 and v + u = p,
from which we finally obtain a =

( p+1
2

)2, b =
( p−1

2

)2, where p must be an odd prime.
03.17. All the positive divisors of a positive integer n are stored into an array in increasing order.
Mary has to write a program which decides for an arbitrarily chosen divisor d > 1 whether it is a
prime. Let n have k divisors not greater than d. Mary claims that it suffices to check divisibility
of d by the first dk/2e divisors of n: If a divisor of d greater than 1 is found among them, then d
is composite, otherwise d is prime. Is Mary right?
Answer: Yes, Mary is right.
Solution: Let d > 1 be a divisor of n. Suppose Mary’s program outputs “composite” for
d. That means it has found a divisor of d greater than 1. Since d > 1, the array contains
at least 2 divisors of d, namely 1 and d. Thus Mary’s program does not check divisibility
of d by d (the first half gets complete before reaching d) which means that the divisor
found lays strictly between 1 and d. Hence d is composite indeed.

Suppose now d being composite. Let p be its smallest prime divisor; then d
p ≥ p

or, equivalently, d ≥ p2. As p is a divisor of n, it occurs in the array. Let a1, . . . , ak all
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divisors of n smaller than p. Then pa1, . . . , pak are less than p2 and hence less than d.
As a1, . . . , ak are all relatively prime with p, all the numbers pa1, . . . , pak divide n. The
numbers a1, . . . , ak, pa1, . . . , pak are pairwise different by construction. Thus there are at
least 2k + 1 divisors of n not greater than d. So Mary’s program checks divisibility of d
by at least k + 1 smallest divisors of n, among which it finds p, and outputs “composite”.

03.18. Every integer is coloured with exactly one of the colours blue, green, red, yellow.
Can this be done in such a way that if a, b, c, d are not all 0 and have the same colour, then
3a− 2b 6= 2c− 3d?
Answer: Yes.
Solution: A colouring with the required property can be defined as follows. For a
non-zero integer k let k∗ be the integer uniquely defined by k = 5m · k∗, where m is a
nonnegative integer and 5 - k∗. We also define 0∗ = 0. Two non-zero integers k1, k2
receive the same colour if and only if k∗1 ≡ k∗2 (mod 5); we assign 0 any colour.

Assume a, b, c, d has the same colour and that 3a− 2b = 2c− 3d, which we rewrite as
3a− 2b− 2c+ 3d = 0. Dividing both sides by the largest power of 5 which simultaneously
divides a, b, c, d (this makes sense since not all of a, b, c, d are 0), we obtain

3 · 5A · a∗ − 2 · 5B · b∗ − 2 · 5C · c∗ + 3 · 5D · d∗ = 0,

where A, B, C, D are nonnegative integers at least one of which is equal to 0. The above
equality implies

3(5A · a∗ + 5B · b∗ + 5C · c∗ + 5D · d∗) ≡ 0 (mod 5).

Assume a, b, c, d are all non-zero. Then a∗ ≡ b∗ ≡ c∗ ≡ d∗ 6≡ 0 (mod 5). This implies

5A + 5B + 5C + 5D ≡ 0 (mod 5) (03.15)

which is impossible since at least one of the numbers A, B, C, D is equal to 0. If one or
more of a, b, c, d are 0, we simply omit the corresponding terms from (03.15), and the
same conclusion holds.

03.19. Let a and b be positive integers. Prove that if a3 + b3 is the square of an integer, then a + b
is not a product of two different prime numbers.
Solution: Suppose a + b = pq, where p 6= q are two prime numbers. We may assume
that p 6= 3. Since

a3 + b3 = (a + b)(a2 − ab + b2)

is a square, the number a2 − ab + b2 = (a + b)2 − 3ab must be divisible by p and q,
whence 3ab must be divisible by p and q. But p 6= 3, so p | a or p | b; but p | a + b, so
p | a and p | b. Write a = pk, b = p` for some integers k, `. Notice that q = 3, since
otherwise, repeating the above argument, we would have q | a, q | b and a + b > pq). So
we have

3p = a + b = p(k + `)

and we conclude that a = p, b = 2p or a = 2p, b = p. Then a3 + b3 = 9p3 is obviously
not a square, a contradiction.



36 Baltic Way

03.20. Let n be a positive integer such that the sum of all the positive divisors of n (except n) plus
the number of these divisors is equal to n. Prove that n = 2m2 for some integer m.
Solution: Let t1 < t2 < · · · < ts be all positive odd divisors of n, and let 2k be the
maximal power of 2 that divides n. Then the full list of divisors of n is the following:

t1, . . . , ts, 2t1, . . . , 2ts, . . . , 2kt1, . . . , 2kts.

Hence,

2n = (2k+1 − 1)(t1 + t2 + · · ·+ ts) + (k + 1)s− 1.

The right-hand side can be even only if both k and s are odd. In this case the number
n/2k has an odd number of divisors and therefore it is equal to a perfect square r2.
Writing k = 2a + 1, we have n = 2kr2 = 2(2ar)2.
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04.1. Given a sequence a1, a2, a3, . . . of non-negative real numbers satisfying the conditions

(1) an + a2n ≥ 3n

(2) an+1 + n ≤ 2
√

an · (n + 1)

for all indices n = 1, 2 . . ..

(a) Prove that the inequality an ≥ n holds for every n ∈N.

(b) Give an example of such a sequence.

Solution: (a) Note that the inequality

an+1 + n
2

≥ √an+1 · n

holds, which together with the second condition of the problem gives

√
an+1 · n ≤

√
an · (n + 1).

This inequality simplifies to

an+1

an
≤ n + 1

n
.

Now, using the last inequality for the index n replaced by n, n + 1, . . . , 2n − 1 and
multiplying the results, we obtain

a2n

an
≤ 2n

n
= 2

or 2an ≥ a2n. Taking into account the first condition of the problem, we have

3an = an + 2an ≥ an + a2n ≥ 3n

which implies an ≥ n. (b) The sequence defined by an = n + 1 satisfies all the conditions
of the problem.
04.2. Let P(x) be a polynomial with non-negative coefficients. Prove that if P( 1

x )P(x) ≥ 1 for
x = 1, then the same inequality holds for each positive x.
Solution: For x > 0 we have P(x) > 0 (because at least one coefficient is non-zero). From
the given condition we have (P(1))2 ≥ 1. Further, let’s denote P(x) = anxn + an−1xn−1 +
· · ·+ a0. Then

P(x)P( 1
x ) = (anxn + · · ·+ a0)(anx−n + · · ·+ a0)

=
n

∑
i=0

a2
i +

n

∑
i=1

i−1

∑
j=0

(ai−jaj)(xi + x−i)

≥
n

∑
i=0

a2
i + 2 ∑

i>j
aiaj

= (P(1))2 ≥ 1.
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04.3. Let p, q, r be positive real numbers and n ∈N. Show that if pqr = 1, then

1
pn + qn + 1

+
1

qn + rn + 1
+

1
rn + pn + 1

≤ 1.

Solution: The key idea is to deal with the case n = 3. Put a = pn/3, b = qn/3, and
c = rn/3, so abc = (pqr)n/3 = 1 and

1
pn+qn+1 +

1
qn+rn+1 +

1
rn+pn+1 = 1

a3+b3+1 +
1

b3+c3+1 +
1

c3+a3+1 .

Now

1
a3+b3+1 = 1

(a+b)(a2−ab+b2)+1 = 1
(a+b)((a−b)2+ab)+1 ≤

1
(a+b)ab+1 .

Since ab = c−1,

1
a3+b3+1 ≤

1
(a+b)ab+1 = c

a+b+c .

Similarly we obtain

1
b3+c3+1 ≤

a
a+b+c and 1

c3+a3+1 ≤
b

a+b+c .

Hence

1
a3+b3+1 +

1
b3+c3+1 +

1
c3+a3+1 ≤

c
a+b+c +

a
a+b+c +

b
a+b+c = 1,

which was to be shown.

04.4. Let x1, x2, . . . , xn be real numbers with arithmetic mean X. Prove that there is a positive
integer K such that the arithmetic mean of each of the lists {x1, x2, . . . , xK}, {x2, x3, . . . , xK},
. . . , {xK−1, xK}, {xK} is not greater than X.
Solution: Suppose the conclusion is false. This means that for every K ∈ {1, 2, . . . , n},
there exists a k ≤ K such that the arithmetic mean of xk, xk+1, . . . , xK exceeds X. We
now define a decreasing sequence b1 ≥ a1 > a1 − 1 = b2 ≥ a2 > · · · as follows: Put
b1 = n, and for each i, let ai be the largest largest k ≤ bi such that the arithmetic mean
of xai , . . . , xbi exceeds X; then put bi+1 = ai − 1 and repeat. Clearly for some m, am = 1.
Now, by construction, each of the sets {xam , . . . , xbm}, {xam−1 , . . . , xbm−1}, . . . , {xa1 , . . . , xb1}
has arithmetic mean strictly greater than X, but then the union {x1, x2, . . . , xn} of these
sets has arithmetic mean strictly greater than X; a contradiction.

04.5. Determine the range of the function f defined for integers k by

f (k) = (k)3 + (2k)5 + (3k)7 − 6k,

where (k)2n+1 denotes the multiple of 2n + 1 closest to k.
Solution: For odd n we have

(k)n = k +
n− 1

2
−
[
k +

n− 1
2
]

n,

where [m]n denotes the principal remainder of m modulo n. Hence we get

f (k) = 6− [k + 1]3 − [2k + 2]5 − [3k + 3]7.
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The condition that the principal remainders take the values a, b and c, respectively, may
be written

k + 1 ≡ a (mod 3),
2k + 2 ≡ b (mod 5),
3k + 3 ≡ c (mod 7)

or
k ≡ a− 1 (mod 3),
k ≡ −2b− 1 (mod 5),
k ≡ −2c− 1 (mod 7).

By the Chinese Remainder Theorem, these congruences have a solution for any set of
a, b, c. Hence f takes all the integer values between 6− 2− 4− 6 = −6 and 6− 0− 0− 0 =
6. (In fact, this proof also shows that f is periodic with period 3 · 5 · 7 = 105.)

04.6. A positive integer is written on each of the six faces of a cube. For each vertex of the cube
we compute the product of the numbers on the three adjacent faces. The sum of these products is
1001. What is the sum of the six numbers on the faces?
Solution: Let the numbers on the faces be a1, a2, b1, b2, c1, c2, placed so that a1 and a2
are on opposite faces etc. Then the sum of the eight products is equal to

(a1 + a2)(b1 + b2)(c1 + c2) = 1001 = 7 · 11 · 13.

Hence the sum of the numbers on the faces is a1 + a2 + b1 + b2 + c1 + c2 = 7 + 11 + 13 =
31.

04.7. Find all sets X consisting of at least two positive integers such that for every pair m, n ∈ X,
where n > m, there exists k ∈ X such that n = mk2.
Answer: The sets {m, m3}, where m > 1.
Solution: Let X be a set satisfying the condition of the problem and let n > m be the
two smallest elements in the set X. There has to exist a k ∈ X so that n = mk2, but as
m ≤ k ≤ n, either k = n or k = m. The first case gives m = n = 1, a contradiction; the
second case implies n = m3 with m > 1.

Suppose there exists a third smallest element q ∈ X. Then there also exists k0 ∈ X,
such that q = mk2

0. We have q > k0 ≥ m, but k0 = m would imply q = n, thus
k0 = n = m3 and q = m7. Now for q and n there has to exist k1 ∈ X such that q = nk2

1,
which gives k1 = m2. Since m2 6∈ X, we have a contradiction.

Thus we see that the only possible sets are those of the form {m, m3} with m > 1,
and these are easily seen to satisfy the conditions of the problem.

04.8. Let f be a non-constant polynomial with integer coefficients. Prove that there is an integer
n such that f (n) has at least 2004 distinct prime factors.
Solution: Suppose the contrary. Choose an integer n0 so that f (n0) has the highest
number of prime factors. By translating the polynomial we may assume n0 = 0. Setting
k = f (0), we have f (wk2) ≡ k (mod k2), or f (wk2) = ak2 + k = (ak + 1)k. Since
gcd(ak + 1, k) = 1 and k alone achieves the highest number of prime factors of f , we
must have ak + 1 = ±1. This cannot happen for every w since f is non-constant, so we
have a contradiction.
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04.9. A set S of n− 1 natural numbers is given (n ≥ 3). There exists at least two elements in
this set whose difference is not divisible by n. Prove that it is possible to choose a non-empty
subset of S so that the sum of its elements is divisible by n.
Solution: Suppose to the contrary that there exists a set X = {a1, a2, . . . , an−1} violating
the statement of the problem, and let an−2 6≡ an−1 (mod n). Denote Si = a1 + a2 +
· · ·+ ai, i = 1, . . . , n− 1. The conditions of the problem imply that all the numbers Si
must give different remainders when divided by n. Indeed, if for some j < k we had
Sj ≡ Sk (mod n), then aj+1 + aj+2 + · · ·+ ak = Sk − Sj ≡ 0 (mod n). Consider now the
sum S′ = Sn−3 + an−1. We see that S′ can not be congruent to any of the sums Si (for
i 6= n− 2 the above argument works and for i = n− 2 we use the assumption an−2 6≡ an−1
(mod n)). Thus we have n sums that give pairwise different remainders when divided
by n, consequently one of them has to give the remainder 0, a contradiction.
04.10. Is there an infinite sequence of prime numbers p1, p2, . . . such that |pn+1 − 2pn| = 1 for
each n ∈N?
Answer: No, there is no such sequence.
Solution: Suppose the contrary. Clearly p3 > 3. There are two possibilities: If p3 ≡ 1
(mod 3) then necessarily p4 = 2p3 − 1 (otherwise p4 ≡ 0 (mod 3)), so p4 ≡ 1 (mod 3).
Analogously p5 = 2p4 − 1, p6 = 2p5 − 1 etc. By an easy induction we have

pn+1 − 1 = 2n−2(p3 − 1), n = 3, 4, 5, . . . .

If we set n = p3 + 1 we have pp3+2 − 1 = 2p3−1(p3 − 1), from which

pp3+2 ≡ 1 + 1 · (p3 − 1) = p3 ≡ 0 (mod p3),

a contradiction. The case p3 ≡ 2 (mod 3) is treated analogously.
04.11. An m× n table is given, in each cell of which a number +1 or −1 is written. It is known
that initially exactly one −1 is in the table, all the other numbers being +1. During a move, it is
allowed to choose any cell containing −1, replace this −1 by 0, and simultaneously multiply all
the numbers in the neighboring cells by −1 (we say that two cells are neighboring if they have a
common side). Find all (m, n) for which using such moves one can obtain the table containing
zeroes only, regardless of the cell in which the initial −1 stands.
Answer: Those (m, n) for which at least one of m, n is odd.
Solution: Let us erase a unit segment which is the common side of any two cells in
which two zeroes appear. If the final table consists of zeroes only, all the unit segments
(except those which belong to the boundary of the table) are erased. We must erase a
total of

m(n− 1) + n(m− 1) = 2mn−m− n

such unit segments.
On the other hand, in order to obtain 0 in a cell with initial +1 one must first

obtain −1 in this cell, that is, the sign of the number in this cell must change an odd
number of times (namely, 1 or 3). Hence, any cell with −1 (except the initial one) has
an odd number of neighboring zeroes. So, any time we replace −1 by 0 we erase an
odd number of unit segments. That is, the total number of unit segments is congruent
modulo 2 to the initial number of +1’s in the table. Therefore 2mn−m− n ≡ mn− 1
(mod 2), implying that (m− 1)(n− 1) ≡ 0 (mod 2), so at least one of m, n is odd.

It remains to show that if, for example, n is odd, we can obtain a zero table. First,
if −1 is in the i’th row, we may easily make the i’th row contain only zeroes, while its
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one or two neighboring rows contain only −1’s. Next, in any row containing only −1’s,
we first change the −1 in the odd-numbered columns (that is, the columns 1, 3, . . . , n)
to zeroes, resulting in a row consisting of alternating 0 and −1 (since the −1’s in the
even-numbered columns have been changed two times), and we then easily obtain an
entire row of zeroes. The effect of this on the next neighboring row is to create a new
row of −1’s, while the original row is clearly unchanged. In this way we finally obtain a
zero table.

04.12. There are 2n different numbers in a row. By one move we can interchange any two
numbers or interchange any three numbers cyclically (choose a, b, c and place a instead of b, b
instead of c and c instead of a). What is the minimal number of moves that is always sufficient to
arrange the numbers in increasing order?
Solution: If a number y occupies the place where x should be at the end, we draw an
arrow x → y. Clearly at the beginning all numbers are arranged in several cycles: Loops

• 	 , binary cycles •� • and “long” cycles (at least three numbers). Our aim is

to obtain 2n loops.
Clearly each binary cycle can be rearranged into two loops by one move. If there is a

long cycle with a fragment · · · → a→ b→ c→ · · · , interchange a, b, c cyclically so that
at least two loops, a 	 , b 	 , appear. By each of these moves, the number of loops increase
by 2, so at most n moves are needed.

On the other hand, by checking all possible ways the two or three numbers can
be distributed among disjoint cycles, it is easy to see that each of the allowed moves
increases the number of disjoint cycles by at most two. Hence if the initial situation is
one single loop, at least n moves are needed.

04.13. The 25 member states of the European Union set up a committee with the following
rules: (1) the committee should meet daily; (2) at each meeting, at least one member state should
be represented; (3) at any two different meetings, a different set of member states should be
represented; and (4) at the n’th meeting, for every k < n, the set of states represented should
include at least one state that was represented at the k’th meeting. For how many days can the
committee have its meetings?
Answer: At most 224 = 16777216 days.
Solution: If one member is always represented, rules 2 and 4 will be fulfilled. There are
224 different subsets of the remaining 24 members, so there can be at least 224 meetings.
Rule 3 forbids complementary sets at two different meetings, so the maximal number
of meetings cannot exceed 1

2 · 225 = 224. So the maximal number of meetings for the
committee is exactly 224 = 16777216.

04.14. We say that a pile is a set of four or more nuts. Two persons play the following game. They
start with one pile of n ≥ 4 nuts. During a move a player takes one of the piles that they have
and split it into two non-empty subsets (these sets are not necessarily piles, they can contain an
arbitrary number of nuts). If the player cannot move, he loses. For which values of n does the first
player have a winning strategy?
Answer: The first player has a winning strategy when n ≡ 0, 1, 2 (mod 4); otherwise the
second player has a winning strategy.
Solution: Let n = 4k + r, where 0 ≤ r ≤ 3. We will prove the above answer by induction
on k; clearly it holds for k = 1. We are also going to need the following useful fact:

If at some point there are exactly two piles with 4s + 1 and 4t + 1 nuts,
s + t ≤ k, then the second player to move from that point wins.
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This holds vacuously when k = 1.
Now assume that we know the answer when the starting pile consists of at most

4k− 1 nuts, and that the useful fact holds for s + t ≤ k. We will prove the answer is
correct for 4k, 4k + 1, 4k + 2 and 4k + 3, and that the useful fact holds for s + t ≤ k + 1.
For the sake of bookkeeping, we will refer to the first player as A and the second player
as B.

If the pile consists of 4k, 4k + 1 or 4k + 2 nuts, A simply makes one pile consisting
of 4k− 1 nuts, and another consisting of 1, 2 or 3 nuts, respectively. This makes A the
second player in a game starting with 4k− 1 ≡ 3 (mod 4) nuts, so A wins.

Now assume the pile contains 4k + 3 nuts. A can split the pile in two ways: Either
as (4p + 1, 4q + 2) or (4p, 4q + 3). In the former case, if either p or q is 0, B wins by the
above paragraph. Otherwise, B removes one nut from the 4q + 2 pile, making B the
second player in a game where we may apply the useful fact (since p + q = k), so B wins.
If A splits the original pile as (4p, 4q + 3), B removes one nut from the 4p pile, so the
situation is two piles with 4(p− 1) + 3 and 4q + 3 nuts. Then B can use the winning
strategy for the second player just described on each pile seperately, ultimately making B
the winner.

It remains to prove the useful fact when s + t = k + 1. Due to symmetry, there are
two possibilities for the first move: Assume the first player moves (4s + 1, 4t + 1) →
(4s + 1, 4p, 4q + 1). The second player then splits the middle pile into (4p− 1, 1), so the
situation is (4s + 1, 4q + 1, 4p− 1). Since the second player has a winning strategy both
when the initial situtation is (4s + 1, 4q + 1) and when it is 4p− 1, he wins (this also
holds when p = 1).

Now assume the first player makes the move (4s+ 1, 4t+ 1)→ (4s+ 1, 4p+ 2, 4q+ 3).
If p = 0, the second player splits the third pile as 4q + 3 = (4q + 1) + 2 and wins by the
useful fact. If p > 0, the second player splits the second pile as 4p + 2 = (4p + 1) + 1,
and wins because he wins in each of the situations (4s + 1, 4p + 1) and 4q + 3.

04.15. A circle is divided into 13 segments, numbered consecutively from 1 to 13. Five fleas called
A, B, C, D and E are sitting in the segments 1, 2, 3, 4 and 5. A flea is allowed to jump to an
empty segment five positions away in either direction around the circle. Only one flea jumps at
the same time, and two fleas cannot be in the same segment. After some jumps, the fleas are back
in the segments 1, 2, 3, 4, 5, but possibly in some other order than they started. Which orders are
possible?
Solution: Write the numbers from 1 to 13 in the order 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4,
9. Then each time a flea jumps it moves between two adjacent numbers or between the
first and the last number in this row. Since a flea can never move past another flea, the
possible permutations are

1 3 5 2 4
A C E B D
D A C E B
B D A C E
E B D A C
C E B D A

or equivalently

1 2 3 4 5
A B C D E
D E A B C
B C D E A
E A B C D
C D E A B

that is, exactly the cyclic permutations of the original order.

04.16. Through a point P exterior to a given circle pass a secant and a tangent to the circle. The
secant intersects the circle at A and B, and the tangent touches the circle at C on the same side of
the diameter thorugh P as A and B. The projection of C on the diameter is Q. Prove that QC
bisects ∠AQB.
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Solution: Denoting the centre of the circle by O, we have OQ · OP = OA2 = OB2.
Hence 4OAQ ∼ 4OPA and 4OBQ ∼ 4OPB. Since 4AOB is isosceles, we have
∠OAP +∠OBP = 180◦, and therefore

∠AQP +∠BQP = ∠AOP +∠OAQ +∠BOP +∠OBQ
= ∠AOP +∠OPA +∠BOP +∠OPB
= 180◦ −∠OAP + 180◦ −∠OBP
= 180◦.

Thus QC, being perpendicular to QP, bisects ∠AQB.

04.17. Consider a rectangle with side lengths 3 and 4, and pick an arbitrary inner point on each
side. Let x, y, z and u denote the side lengths of the quadrilateral spanned by these points. Prove
that 25 ≤ x2 + y2 + z2 + u2 ≤ 50.
Solution: Let a, b, c and d be the distances of the chosen points from the midpoints of
the sides of the rectangle (with a and c on the sides of length 3). Then

x2 + y2 + z2 + u2 = ( 3
2 + a)2 + ( 3

2 − a)2 + ( 3
2 + c)2 + ( 3

2 − c)2

+ (2 + b)2 + (2− b)2 + (2 + d)2 + (2− d)2

= 4 · ( 3
2 )

2 + 4 · 22 + 2(a2 + b2 + c2 + d2)

= 25 + 2(a2 + b2 + c2 + d2).

Since 0 ≤ a2, c2 ≤ (3/2)2, 0 ≤ b2, d2 ≤ 22, the desired inequalities follow.

04.18. A ray emanating from the vertex A of the triangle ABC intersects the side BC at X and
the circumcircle of ABC at Y. Prove that 1

AX + 1
XY ≥

4
BC .

Solution: From the GM-HM inequality we have

1
AX

+
1

XY
≥ 2√

AX · XY
. (04.16)

As BC and AY are chords intersecting at X we have AX ·XY = BX ·XC. Therefore (04.16)
transforms into

1
AX

+
1

XY
≥ 2√

BX · XC
. (04.17)

We also have

√
BX · XC ≤ BX + XC

2
=

BC
2

,

so from (04.17) the result follows.

04.19. D is the midpoint of the side BC of the given triangle ABC. M is a point on the side BC
such that ∠BAM = ∠DAC. L is the second intersection point of the circumcircle of the triangle
CAM with the side AB. K is the second intersection point of the circumcircle of the triangle
BAM with the side AC. Prove that KL ‖ BC.
Solution: It is sufficient to prove that CK : LB = AC : AB.

The triangles ABC and MKC are similar beacuse they have common angle C and
∠CMK = 180◦ − ∠BMK = ∠KAB (the latter equality is due to the observation that
∠BMK and ∠KAB are the opposite angles in the insecribed quadrilateral AKMB).
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By analogous reasoning the triangles ABC and MBL are similar. Therefore the
triangles MKC and MBL are also similar and we have

CK
LB

=
KM
BM

=
AM sin KAM

sin AKM
AM sin MAB

sin MBA

=
sin KAM
sin MAB

=
sin DAB
sin DAC

=
BD sin BDA

AB
CD sin CDA

AC

=
AC
AB

.

The second equality is due to the sinus theorem for triangles AKM and ABM; the third
is due to the equality ∠AKM = 180◦ −∠MBA in the inscribed quadrilateral AKMB; the
fourth is due to the definition of the point M; and the fifth is due to the sinus theorem
for triangles ACD and ABD.
04.20. Three circular arcs w1, w2, w3 with common endpoints A and B are on the same side of
the line AB; w2 lies between w1 and w3. Two rays emanating from B intersect these arcs at
M1, M2, M3 and K1, K2, K3, respectively. Prove that M1 M2

M2 M3
= K1K2

K2K3
.

Solution: From inscribed angles we have ∠AK1B = ∠AM1B and ∠AK2B = ∠AM2B.
From this it follows that 4AK1K2 ∼ 4AM1M2, so

K1K2

M1M2
=

AK2

AM2
.

Similarly 4AK2K3 ∼ 4AM2M3, so

K2K3

M2M3
=

AK2

AM2
.

From these equations we get K1K2
M1 M2

= K2K3
M2 M3

, from which the desired property follows.

A B

w1

w2

w3

K1

K2

K3

M1

M2

M3
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05.1. Let a0 be a positive integer. Define the sequence an, n ≥ 0, as follows: If

an =
j

∑
i=0

ci10i

where ci are integers with 0 ≤ ci ≤ 9, then

an+1 = c2005
0 + c2005

1 + · · ·+ c2005
j .

Is it possible to choose a0 so that all the terms in the sequence are distinct?
Answer: No, the sequence must contain two equal terms.
Solution: It is clear that there exists a smallest positive integer k such that

10k > (k + 1) · 92005.

We will show that there exists a positive integer N such that an consists of less than k + 1
decimal digits for all n ≥ N. Let ai be a positive integer which consists of exactly j + 1
digits, that is,

10j ≤ ai < 10j+1.

We need to prove two statements:

• ai+1 has less than k + 1 digits if j < k; and
• ai > ai+1 if j ≥ k.

To prove the first statement, notice that

ai+1 ≤ (j + 1) · 92005 < (k + 1) · 92005 < 10k

and hence ai+1 consists of less than k + 1 digits. To prove the second statement, notice
that ai consists of j + 1 digits, none of which exceeds 9. Hence ai+1 ≤ (j + 1) · 92005 and
because j ≥ k, we get ai ≥ 10j > (j + 1) · 92005 ≥ ai+1, which proves the second statement.
It is now easy to derive the result from this statement. Assume that a0 consists of k + 1 or
more digits (otherwise we are done, because then it follows inductively that all terms of
the sequence consist of less than k + 1 digits, by the first statement). Then the sequence
starts with a strictly decreasing segment a0 > a1 > a2 > · · · by the second statement, so
for some index N the number aN has less than k + 1 digits. Then, by the first statement,
each number an with n ≥ N consists of at most k digits. By the Pigeonhole Principle,
there are two different indices n, m ≥ N such that an = am.

05.2. Let α, β and γ be three angles with 0 ≤ α, β, γ < 90◦ and sin α + sin β + sin γ = 1. Show
that

tan2 α + tan2 β + tan2 γ ≥ 3
8

.

Solution: Since tan2 x = 1/ cos2 x− 1, the inequality to be proved is equivalent to

1
cos2 α

+
1

cos2 β
+

1
cos2 γ

≥ 27
8

.
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The AM-HM inequality implies

3
1

cos2 α
+ 1

cos2 β
+ 1

cos2 γ

≤ cos2 α + cos2 β + cos2 γ

3

=
3− (sin2 α + sin2 β + sin2 γ)

3

≤ 1−
(sin α + sin β + sin γ

3

)2

=
8
9

and the result follows.

05.3. Consider the sequence ak defined by a1 = 1, a2 = 1
2 ,

ak+2 = ak +
1
2

ak+1 +
1

4akak+1
for k ≥ 1.

Prove that
1

a1a3
+

1
a2a4

+
1

a3a5
+ · · ·+ 1

a98a100
< 4.

Solution: Note that

1
akak+2

<
2

akak+1
− 2

ak+1ak+2
,

because this inequality is equivalent to the inequality

ak+2 > ak +
1
2

ak+1,

which is evident for the given sequence. Now we have

1
a1a3

+
1

a2a4
+

1
a3a5

+ · · ·+ 1
a98a100

<
2

a1a2
− 2

a2a3
+

2
a2a3
− 2

a3a4
+ · · ·

<
2

a1a2
= 4.

05.4. Find three different polynomials P(x) with real coefficients such that P(x2 + 1) = P(x)2 + 1
for all real x.
Answer: For example, P(x) = x, P(x) = x2 + 1 and P(x) = x4 + 2x2 + 2.
Solution: Let Q(x) = x2 + 1. Then the equation that P must satisfy can be written
P(Q(x)) = Q(P(x)), and it is clear that this will be satisfied for P(x) = x, P(x) = Q(x)
and P(x) = Q(Q(x)).

Solution 2: For all reals x we have P(x)2 + 1 = P(x2 + 1) = P(−x)2 + 1 and consequently,
(P(x) + P(−x))(P(x)− P(−x)) = 0. Now one of the three cases holds:

(a) If both P(x) + P(−x) and P(x) − P(−x) are not identically 0, then they are non-
constant polynomials and have a finite numbers of roots, so this case cannot hold.
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(b) If P(x) + P(−x) is identically 0 then obviously, P(0) = 0. Consider the infinite
sequence of integers a0 = 0 and an+1 = a2

n + 1. By induction it is easy to see that
P(an) = an for all non-negative integers n. Also, Q(x) = x has that property, so
P(x)−Q(x) is a polynomial with infinitely many roots, whence P(x) = x.

(c) If P(x)− P(−x) is identically 0 then

P(x) = x2n + bn−1x2n−2 + · · ·+ b1x2 + b0,

for some integer n since P(x) is even and it is easy to see that the coefficient of
x2n must be 1. Putting n = 1 and n = 2 yield the solutions P(x) = x2 + 1 and
P(x) = x4 + 2x2 + 2.

Remark: For n = 3 there is no solution, whereas for n = 4 there is the unique solution
P(x) = x8 + 6x6 + 8x4 + 8x2 + 5.
05.5. Let a, b, c be positive real numbers with abc = 1. Prove that

a
a2 + 2

+
b

b2 + 2
+

c
c2 + 2

≤ 1.

Solution: For any positive real x we have x2 + 1 ≥ 2x. Hence

a
a2 + 2

+
b

b2 + 2
+

c
c2 + 2

≤ a
2a + 1

+
b

2b + 1
+

c
2c + 1

=
1

2 + 1/a
+

1
2 + 1/b

+
1

2 + 1/c
=: R.

R ≤ 1 is equivalent to(
2 + 1

b

)(
2 + 1

c

)
+
(
2 + 1

a

)(
2 + 1

c

)
+
(
2 + 1

a

)(
2 + 1

b

)
≤

(
2 + 1

a

)(
2 + 1

b

)(
2 + 1

c

)
and to 4 ≤ 1

ab +
1
ac +

1
bc +

1
abc . By abc = 1 and by the AM-GM inequality

1
ab

+
1
ac

+
1
bc
≥ 3 3

√( 1
abc

)2
= 3

the last inequality follows. Equality appears exactly when a = b = c = 1.
05.6. Let K and N be positive integers with 1 ≤ K ≤ N. A deck of N different playing cards is
shuffled by repeating the operation of reversing the order of the K topmost cards and moving these
to the bottom of the deck. Prove that the deck will be back in its initial order after a number of
operations not greater than 4 · N2/K2.
Solution: Let N = q · K + r, 0 ≤ r < K, and let us number the cards 1, 2, . . . , N, starting
from the one at the bottom of the deck. First we find out how the cards 1, 2, . . . K are
moving in the deck.

If i ≤ r then the card i is moving along the cycle

i→ K + i→ 2K + i→ · · · → qK + i→ (r + 1− i)→
K + (r + 1− i)→ · · · → qK + (r + 1− i),

because N− K < qK + i ≤ N and N− K < qK + (r + 1− i) ≤ N. The length of this cycle
is 2q + 2. In the special case of i = r + i− 1, it actually consists of two smaller cycles of
length q + 1.
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If r < i ≤ K then the card i is moving along the cycle

i→ K + i→ 2K + i→ · · · → (q− 1)K + i→
K + r + 1− i→ K + (K + r + 1− i)→

2K + (K + r + 1− i)→ · · · → (q− 1)K + (K + r + 1− i),

because N − K < (q− 1)K + i ≤ N and N − K < (q− 1)K + (K + r + 1− i) ≤ N. The
length of this cycle is 2q. In the special case of i = K + r + 1− i, it actually consists of
two smaller cycles of length q.

Since these cycles cover all the numbers 1, . . . , N, we can say that every card returns
to its initial position after either 2q + 2 or 2q operations. Therefore, all the cards are
simultaneously at their initial position after at most lcm(2q + 2, 2q) = 2 lcm(q + 1, q) =
2q(q + 1) operations. Finally,

2q(q + 1) ≤ (2q)2 = 4q2 ≤ 4
(N

K

)2,

which concludes the proof.

05.7. A rectangular array has n rows and six columns, where n > 2. In each cell there is
written either 0 or 1. All rows in the array are different from each other. For each pair of rows
(x1, x2, . . . , x6) and (y1, y2, . . . , y6), the row (x1y1, x2y2, . . . , x6y6) can also be found in the
array. Prove that there is a column in which at least half of the entries are zeroes.
Solution: Clearly there must be rows with some zeroes. Consider the case when
there is a row with just one zero; we can assume it is (0, 1, 1, 1, 1, 1). Then for each
row (1, x2, x3, x4, x5, x6) there is also a row (0, x2, x3, x4, x5, x6); the conclusion follows.
Consider the case when there is a row with just two zeroes; we can assume it is
(0, 0, 1, 1, 1, 1). Let nij be the number of rows with first two elements i, j. As in the first
case n00 ≥ n11. Let n01 ≥ n10; the other subcase is analogous. Now there are n00 + n01
zeroes in the first column and n10 + n11 ones in the first column; the conclusion follows.
Consider now the case when each row contains at least three zeroes (except (1, 1, 1, 1, 1, 1),
if such a row exists). Let us prove that it is impossible that each such row contains exactly
three zeroes. Assume the opposite. As n > 2 there are at least two rows with zeroes; they
are different, so their product contains at least four zeroes, a contradiction. So there are
more then 3(n− 1) zeroes in the array; so in some column there are more than (n− 1)/2
zeroes; so there are at least n/2 zeroes.

05.8. Consider a grid of 25× 25 unit squares. Draw with a red pen contours of squares of any
size on the grid. What is the minimal number of squares we must draw in order to colour all the
lines of the grid?
Answer: 48 squares.
Solution: Consider a diagonal of the square grid. For any grid vertex A on this diagonal
denote by C the farthest endpoint of this diagonal. Let the square with the diagonal AC
be red. Thus, we have defined the set of 48 red squares (24 for each diagonal). It is clear
that if we draw all these squares, all the lines in the grid will turn red.

In order to show that 48 is the minimum, consider all grid segments of length 1
that have exactly one endpoint on the border of the grid. Every horizontal and every
vertical line that cuts the grid into two parts determines two such segments. So we have
4 · 24 = 96 segments. It is evident that every red square can contain at most two of these
segments.
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05.9. A rectangle is divided into 200× 3 unit squares. Prove that the number of ways of splitting
this rectangle into rectangles of size 1× 2 is divisible by 3.
Solution: Let us denote the number of ways to split some figure into dominos by a
small picture of this figure with a sign #. For example, # = 2.

Let Nn = # (n rows) and γn = # (n− 2 full rows and one row with two cells).

We are going to find a recurrence relation for the numbers Nn.
Observe that

# = # + # + # = 2# + #

# = # + # = # + #

We can generalize our observations by writing the equalities

Nn = 2γn + Nn−2,
2γn−2 = Nn−2 − Nn−4,

2γn = 2γn−2 + 2Nn−2.

If we sum up these equalities we obtain the desired recurrence

Nn = 4Nn−2 − Nn−4.

It is easy to find that N2 = 3, N4 = 11. Now by the recurrence relation it is trivial to
check that N6k+2 ≡ 0 (mod 3).

05.10. Let m = 30030 = 2 · 3 · 5 · 7 · 11 · 13 and let M be the set of its positive divisors which
have exactly two prime factors. Determine the minimal integer n with the following property:
for any choice of n numbers from M, there exist three numbers a, b, c among them satisfying
a · b · c = m.
Answer: n = 11.
Solution: Taking the 10 divisors without the prime 13 shows that n ≥ 11. Consider the
following partition of the 15 divisors into five groups of three each with the property
that the product of the numbers in every group equals m.

{2 · 3, 5 · 13, 7 · 11}, {2 · 5, 3 · 7, 11 · 13}, {2 · 7, 3 · 13, 5 · 11},
{2 · 11, 3 · 5, 7 · 13}, {2 · 13, 3 · 11, 5 · 7}.

If n = 11, there is a group from which we take all three numbers, that is, their product
equals m.

05.11. Let the points D and E lie on the sides BC and AC, respectively, of the triangle ABC,
satisfying BD = AE. The line joining the circumcentres of the triangles ADC and BEC meets
the lines AC and BC at K and L, respectively. Prove that KC = LC.
Solution: Assume that the circumcircles of triangles ADC and BEC meet at C and P.
The problem is to show that the line KL makes equal angles with the lines AC and BC.
Since the line joining the circumcentres of triangles ADC and BEC is perpendicular to
the line CP, it suffices to show that CP is the angle-bisector of ∠ACB.
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A B

C

D

E

K

L

P

Since the points A, P, D, C are concyclic, we obtain ∠EAP = ∠BDP. Analogously, we
have ∠AEP = ∠DBP. These two equalities together with AE = BD imply that triangles
APE and DPB are congruent. This means that the distance from P to AC is equal to the
distance from P to BC, and thus CP is the angle-bisector of ∠ACB, as desired.
05.12. Let ABCD be a convex quadrilateral such that BC = AD. Let M and N be the midpoints
of AB and CD, respectively. The lines AD and BC meet the line MN at P and Q, respectively.
Prove that CQ = DP.
Solution: Let A′, B′, C′, D′ be the feet of the perpendiculars from A, B, C, D, respectively,
onto the line MN. Then

AA′ = BB′ and CC′ = DD′.

Denote by X, Y the feet of the perpendiculars from C, D onto the lines BB′, AA′,
respectively. We infer from the above equalities that AY = BX. Since also BC = AD, the
right-angled triangles BXC and AYD are congruent. This shows that

∠C′CQ = ∠B′BQ = ∠A′AP = ∠D′DP.

Therefore, since CC′ = DD′, the triangles CC′Q and DD′P are congruent. Thus CQ =
DP.

A B

CD

A′

B′

C′

D′

M

N

P
Q

X

Y

05.13. What is the smallest number of circles of radius
√

2 that are needed to cover a rectangle

(a) of size 6× 3?

(b) of size 5× 3?

Answer: (a) Six circles, (b) five circles.
Solution: (a) Consider the four corners and the two midpoints of the sides of length 6.
The distance between any two of these six points is 3 or more, so one circle cannot cover
two of these points, and at least six circles are needed.
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On the other hand one circle will cover a 2× 2 square, and it is easy to see that six
such squares can cover the rectangle.

(b) Consider the four corners and the centre of the rectangle. The minimum distance
between any two of these points is the distance between the centre and one of the corners,
which is

√
34/2. This is greater than the diameter of the circle (

√
34/4 >

√
32/4), so one

circle cannot cover two of these points, and at least five circles are needed.

1

2

5/2

5/3Partition the rectangle into three rectangles of size 5/3× 2 and two
rectangles of size 5/2× 1 as shown on the right. It is easy to check that
each has a diagonal of length less than 2

√
2, so five circles can cover the

five small rectangles and hence the 5× 3 rectangle.

05.14. Let the medians of the triangle ABC meet at M. Let D and E be different points on the
line BC such that DC = CE = AB, and let P and Q be points on the segments BD and BE,
respectively, such that 2BP = PD and 2BQ = QE. Determine ∠PMQ.

Answer: ∠PMQ = 90◦.

Solution: Draw the parallelogram ABCA′, with AA′ ‖ BC. Then M lies on BA′, and
BM = 1

3 BA′. So M is on the homothetic image (centre B, dilation 1/3) of the circle with
centre C and radius AB, which meets BC at D and E. The image meets BC at P and Q.
So ∠PMQ = 90◦.

M

B C

A A′

D EP Q

05.15. Let the lines e and f be perpendicular and intersect each other at O. Let A and B lie on e
and C and D lie on f , such that all the five points A, B, C, D and O are distinct. Let the lines
b and d pass through B and D respectively, perpendicularly to AC; let the lines a and c pass
through A and C respectively, perpendicularly to BD. Let a and b intersect at X and c and d
intersect at Y. Prove that XY passes through O.

Solution: Let A1 be the intersection of a with BD, B1 the intersection of b with AC, C1
the intersection of c with BD and D1 the intersection of d with AC. It follows easily by
the given right angles that the following three sets each are concyclic:

• A, A1, D, D1, O lie on a circle w1 with diameter AD.

• B, B1, C, C1, O lie on a circle w2 with diameter BC.

• C, C1, D, D1 lie on a circle w3 with diameter DC.

We see that O lies on the radical axis of w1 and w2. Also, Y lies on the radical axis of w1
and w3, and on the radical axis of w2 and w3, so Y is the radical centre of w1, w2 and
w3, so it lies on the radical axis of w1 and w2. Analogously we prove that X lies on the
radical axis of w1 and w2.
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A
B

C

D

X

YA1

B1

C1

D1

a

b

c

d

w1

w2

w3

e

f

05.16. Let p be a prime number and let n be a positive integer. Let q be a positive divisor of
(n + 1)p − np. Show that q− 1 is divisible by p.
Solution: It is sufficient to show the statement for q prime. We need to prove that

(n + 1)p ≡ np (mod q) =⇒ q ≡ 1 (mod p).

It is obvious that gcd(n, q) = gcd(n + 1, q) = 1 (as n and n + 1 cannot be divisible by q
simultaneously). Hence there exists a positive integer m such that mn ≡ 1 (mod q). In
fact, m is just the multiplicative inverse of n (mod q). Take s = m(n + 1). It is easy to
see that

sp ≡ 1 (mod q).

Let t be the smallest positive integer which satisfies st ≡ 1 (mod q) (t is the order of
s (mod q)). One can easily prove that t divides p. Indeed, write p = at + b where
0 ≤ b < t. Then

1 ≡ sp ≡ sat+b ≡
(
st)a · sb ≡ sb (mod q).

By the definition of t, we must have b = 0. Hence t divides p. This means that t = 1 or
t = p. However, t = 1 is easily seen to give a contradiction since then we would have

m(n + 1) ≡ 1 (mod q) or n + 1 ≡ n (mod q).

Therefore t = p, and p is the order of s (mod q). By Fermat’s little theorem,
sq−1 ≡ 1 (mod q).

Since p is the order of s (mod q), we have that p divides q− 1, and we are done.

05.17. A sequence (xn), n ≥ 0, is defined as follows: x0 = a, x1 = 2 and xn = 2xn−1xn−2 −
xn−1 − xn−2 + 1 for n > 1. Find all integers a such that 2x3n − 1 is a perfect square for all
n ≥ 1.
Answer: a = (2m−1)2+1

2 where m is an arbitrary positive integer.
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Solution: Let yn = 2xn − 1. Then

yn = 2(2xn−1xn−2 − xn−1 − xn−2 + 1)− 1
= 4xn−1xn−2 − 2xn−1 − 2xn−2 + 1
= (2xn−1 − 1)(2xn−2 − 1) = yn−1yn−2

when n > 1. Notice that yn+3 = yn+2yn+1 = y2
n+1yn. We see that yn+3 is a perfect square

if and only if yn is a perfect square. Hence y3n is a perfect square for all n ≥ 1 exactly
when y0 is a perfect square. Since y0 = 2a− 1, the result is obtained when a = (2m−1)2+1

2
for all positive integers m.
05.18. Let x and y be positive integers and assume that z = 4xy/(x + y) is an odd integer. Prove
that at least one divisor of z can be expressed in the form 4n− 1 where n is a positive integer.
Solution: Let x = 2sx1 and y = 2ty1 where x1 and y1 are odd integers. Without loss of
generality we can assume that s ≥ t. We have

z =
2s+t+2x1y1

2t(2s−tx1 + y1)
=

2s+2x1y1

2s−tx1 + y1
.

If s 6= t, then the denominator is odd and therefore z is even. So we have s = t
and z = 2s+2x1y1/(x1 + y1). Let x1 = dx2, y1 = dy2 with gcd(x2, y2) = 1. So z =
2s+2dx2y2/(x2 + y2). As z is odd, it must be that x2 + y2 is divisible by 2s+2 ≥ 4, so
x2 + y2 is divisible by 4. As x2 and y2 are odd integers, one of them, say x2 is congruent
to 3 modulo 4. But gcd(x2, x2 + y2) = 1, so x2 is a divisor of z.
05.19. Is it possible to find 2005 different positive square numbers such that their sum is also a
square number?
Answer: Yes, it is possible.
Solution: Start with a simple Pythagorian identity such as 32 + 42 = 52. Multiply it by 52

32 · 52 + 42 · 52 = 52 · 52

and insert the identity for the first

32 · (32 + 42) + 42 · 52 = 52 · 52

which gives
32 · 32 + 32 · 42 + 42 · 52 = 52 · 52.

Multiply again by 52

32 · 32 · 52 + 32 · 42 · 52 + 42 · 52 · 52 = 52 · 52 · 52

and split the first term

32 · 32 · (32 + 42) + 32 · 42 · 52 + 42 · 52 · 52 = 52 · 52 · 52

that is

32 · 32 · 32 + 32 · 32 · 42 + 32 · 42 · 52 + 42 · 52 · 52 = 52 · 52 · 52.

This (multiplying by 52 and splitting the first term) can be repeated as often as needed,
each time increasing the number of terms by one.

Clearly, each term is a square number and the terms are strictly increasing from left
to right.
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05.20. Find all positive integers n = p1 p2 · · · pk which divide (p1 + 1)(p2 + 1) · · · (pk + 1),
where p1 p2 · · · pk is the factorization of n into prime factors (not necessarily distinct).
Answer: All numbers 2r3s where r and s are non-negative integers and s ≤ r ≤ 2s.
Solution: Let m = (p1 + 1)(p2 + 1) · · · (pk + 1). We may assume that pk is the largest
prime factor. If pk > 3 then pk cannot divide m, because if pk divides m it is a prime factor
of pi + 1 for some i, but if pi = 2 then pi + 1 < pk, and otherwise pi + 1 is an even number
with factors 2 and 1

2 (pi + 1) which are both strictly smaller than pk. Thus the only primes
that can divide n are 2 and 3, so we can write n = 2r3s. Then m = 3r4s = 22s3r which is
divisible by n if and only if s ≤ r ≤ 2s.
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06.1. For a sequence a1, a2, a3, . . . of real numbers it is known that

an = an−1 + an+2 for n = 2, 3, 4, . . . .

What is the largest number of its consecutive elements that can all be positive?
Answer: 5.
Solution: The initial segment of the sequence could be 1; 2; 3; 1; 1; −2; 0. Clearly it is
enough to consider only initial segments. For each sequence the first 6 elements are a1; a2;
a3; a2− a1; a3− a2; a2− a1− a3. As we see, a1 + a5 + a6 = a1 +(a3− a2)+ (a2− a1− a3) =
0. So all the elements a1, a5, a6 can not be positive simultaneously.
06.2. Suppose that the real numbers ai ∈ [−2, 17], i = 1, 2, . . . , 59, satisfy a1 + a2 + · · ·+ a59 =
0. Prove that

a2
1 + a2

2 + · · ·+ a2
59 ≤ 2006.

Solution: For convenience denote m = −2 and M = 17. Then(
ai −

m + M
2

)2
≤
(M−m

2

)2
,

because m ≤ ai ≤ M. So we have
59

∑
i=1

(
ai −

m + M
2

)2
= ∑

i
a2

i + 59 ·
(m + M

2

)2
− (m + M)∑

i
ai

≤ 59 ·
(M−m

2

)2
,

and thus

∑
i

a2
i ≤ 59 ·

((M−m
2

)2
−
(m + M

2

)2
)
= −59 ·m ·M = 2006.

06.3. Prove that for every polynomial P(x) with real coefficients there exist a positive integer m
and polynomials P1(x), P2(x), . . . , Pm(x) with real coefficients such that

P(x) =
(

P1(x)
)3

+
(

P2(x)
)3

+ · · ·+
(

Pm(x)
)3.

Solution: We will prove by induction on the degree of P(x) that all polynomials can be
represented as a sum of cubes. This is clear for constant polynomials. Now we proceed
to the inductive step. It is sufficient to show that if P(x) is a polynomial of degree n,
then there exist polynomials Q1(x), Q2(x), . . ., Qr(x) such that the polynomial

P(x)− (Q1(x))3 − (Q2(x))3 − · · · − (Qr(x))3

has degree at most n− 1. Assume that the coefficient of xn in P(x) is equal to c. We
consider three cases: If n = 3k, we put r = 1, Q1(x) = 3

√
cxk; if n = 3k + 1 we put r = 3,

Q1(x) = 3

√
c
6

xk(x− 1), Q2(x) = 3

√
c
6

xk(x + 1), Q3(x) = − 3

√
c
3

xk+1;

and if n = 3k + 2 we put r = 2 and

Q1(x) = 3

√
c
3

xk(x + 1), Q2(x) = − 3

√
c
3

xk+1.

This completes the induction.
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06.4. Let a, b, c, d, e, f be non-negative real numbers satisfying a + b + c + d + e + f = 6. Find
the maximal possible value of

abc + bcd + cde + de f + e f a + f ab

and determine all 6-tuples (a, b, c, d, e, f ) for which this maximal value is achieved.
Answer: 8.
Solution: If we set a = b = c = 2, d = e = f = 0, then the given expression is equal to 8.
We will show that this is the maximal value. Applying the inequality between arithmetic
and geometric mean we obtain

8 =
( (a + d) + (b + e) + (c + f )

3

)3
≥ (a + d)(b + e)(c + f )

= (abc + bcd + cde + de f + e f a + f ab) + (ace + bd f ),

so we see that abc + bcd + cde + de f + e f a + f ab ≤ 8 and the maximal value 8 is achieved
when a + d = b + e = c + f (and then the common value is 2 because a + b + c + d +
e + f = 6) and ace = bd f = 0, which can be written as (a, b, c, d, e, f ) = (a, b, c, 2− a, 2−
b, 2− c) with ac(2− b) = b(2− a)(2− c) = 0. From this it follows that (a, b, c) must
have one of the forms (0, 0, t), (0, t, 2), (t, 2, 2), (2, 2, t), (2, t, 0) or (t, 0, 0). Therefore the
maximum is achieved for the 6-tuples (a, b, c, d, e, f ) = (0, 0, t, 2, 2, 2− t), where 0 ≤ t ≤ 2,
and its cyclic permutations.
06.5. An occasionally unreliable professor has devoted his last book to a certain binary operation ∗.
When this operation is applied to any two integers, the result is again an integer. The operation is
known to satisfy the following axioms:

(a) x ∗ (x ∗ y) = y for all x, y ∈ Z;

(b) (x ∗ y) ∗ y = x for all x, y ∈ Z.

The professor claims in his book that

(C1) the operation ∗ is commutative: x ∗ y = y ∗ x for all x, y ∈ Z.

(C2) the operation ∗ is associative: (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ Z.

Which of these claims follow from the stated axioms?
Answer: (C1) is true; (C2) is false.
Solution: Write (x, y, z) for x ∗ y = z. So the axioms can be formulated as

(x, y, z) =⇒ (x, z, y) (06.18)
(x, y, z) =⇒ (z, y, x). (06.19)

(C1) is proved by the sequence (x, y, z)
(06.19)
=⇒ (z, y, x)

(06.18)
=⇒ (z, x, y)

(06.19)
=⇒ (y, x, z).

A counterexample for (C2) is the operation x ∗ y = −(x + y).
06.6. Determine the maximal size of a set of positive integers with the following properties:

(1) The integers consist of digits from the set {1, 2, 3, 4, 5, 6}.
(2) No digit occurs more than once in the same integer.

(3) The digits in each integer are in increasing order.

(4) Any two integers have at least one digit in common (possibly at different positions).
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(5) There is no digit which appears in all the integers.

Answer: 32.
Solution: Associate with any ai the set Mi of its digits. By (1), (2) and (3) the numbers
are uniquely determined by their associated subsets of {1, 2, . . . , 6}. By (4) the sets are
intersecting. Partition the 64 subsets of {1, 2, . . . , 6} into 32 pairs of complementary sets
(X, {1, 2, . . . , 6} − X). Obviously, at most one of the two sets in such a pair can be a Mi,
since the two sets are non-intersecting. Hence, n ≤ 32. Consider the 22 subsets with at
least four elements and the 10 subsets with three elements containing 1. Hence, n = 32.
06.7. A photographer took some pictures at a party with 10 people. Each of the 45 possible pairs
of people appears together on exactly one photo, and each photo depicts two or three people. What
is the smallest possible number of photos taken?
Answer: 19.
Solution: Let x be the number of triplet photos (depicting three people, that is, three
pairs) and let y be the number of pair photos (depicting two people, that is, one pair).
Then 3x + y = 45.

Each person appears with nine other people, and since 9 is odd, each person appears
on at least one pair photo. Thus y ≥ 5, so that x ≤ 13. The total number of photos is
x + y = 45− 2x ≥ 45− 2 · 13 = 19.

On the other hand, 19 photos will suffice. We number the persons 0, 1, . . . , 9, and will
proceed to specify 13 triplet photos. We start with making triplets without common pairs
of the persons 1–8:

123, 345, 567, 781

Think of the persons 1–8 as arranged in order around a circle. Then the persons in each
triplet above are separated by at most one person. Next we make triplets containing 0,
avoiding previously mentioned pairs by combining 0 with two people among the persons
1–8 separated by two persons:

014, 085, 027, 036

Then we make triplets containing 9, again avoiding previously mentioned pairs by
combining 9 with the other four possibilities of two people among 1–8 being separated
by two persons:

916, 925, 938, 947

Finally, we make our last triplet, again by combining people from 1–8: 246. Here 2 and
4, and 4 and 6, are separated by one person, but those pairs were not accounted for in
the first list, whereas 2 and 6 are separated by three persons, and have not been paired
before. We now have 13 photos of 39 pairs. The remaining 6 pairs appear on 6 pair
photos.
Remark: This problem is equivalent to asking how many complete 3-graphs can be
packed (without common edges) into a complete 10-graph.
06.8. The director has found out that six conspiracies have been set up in his department, each
of them involving exactly three persons. Prove that the director can split the department in two
laboratories so that none of the conspirative groups is entirely in the same laboratory.
Solution: Let the department consist of n persons. Clearly n > 4 (because (4

3) < 6). If
n = 5, take three persons who do not make a conspiracy and put them in one laboratory,
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the other two in another. If n = 6, note that (6
3) = 20, so we can find a three-person set

such that neither it nor its complement is a conspiracy; this set will form one laboratory.
If n ≥ 7, use induction. We have (n

2) ≥ (7
2) = 21 > 6 · 3, so there are two persons A and B

who are not together in any conspiracy. Replace A and B by a new person AB and use
the inductive hypothesis; then replace AB by initial persons A and B.
06.9. To every vertex of a regular pentagon a real number is assigned. We may perform the
following operation repeatedly: we choose two adjacent vertices of the pentagon and replace each
of the two numbers assigned to these vertices by their arithmetic mean. Is it always possible to
obtain the position in which all five numbers are zeroes, given that in the initial position the sum
of all five numbers is equal to zero?
Answer: No.
Solution: We will show that starting from the numbers − 1

5 , − 1
5 , − 1

5 , − 1
5 , 4

5 we cannot
get five zeroes. By adding 1

5 to all vertices we see that our task is equivalent to showing
that beginning from numbers 0, 0, 0, 0, 1 and performing the same operations we can
never get five numbers 1

5 . This we prove by noticing that in the initial position all the
numbers are “binary rational” – that is, of the form k

2m , where k is an integer and m is
a non-negative integer – and an arithmetic mean of two binary rationals is also such a
number, while the number 1

5 is not of such form.
06.10. 162 pluses and 144 minuses are placed in a 30× 30 table in such a way that each row and
each column contains at most 17 signs. (No cell contains more than one sign.) For every plus we
count the number of minuses in its row and for every minus we count the number of pluses in its
column. Find the maximum of the sum of these numbers.
Answer: 1296 = 72 · 18.
Solution: In the statement of the problem there are two kinds of numbers: “horizontal”
(that has been counted for pluses) and “vertical” (for minuses). We will show that the
sum of numbers of each type reaches its maximum on the same configuration.

We restrict our attention to the horizontal numbers only. Consider an arbitrary row.
Let it contains p pluses and m minuses, m + p ≤ 17. Then the sum that has been counted
for pluses in this row is equal to mp. Let us redistribute this sum between all signs in the
row. More precisely, let us write the number mp/(m + p) in every nonempty cell in the
row. Now the whole “horizontal” sum equals to the sum of all 306 written numbers.

Now let us find the maximal possible contribution of each sign in this sum. That is, we
ask about maximum of the expression f (m, p) = mp/(m+ p) where m+ p ≤ 17. Remark
that f (m, p) is an increasing function of m. Therefore if m + p < 17 then increasing of m
will also increase the value of f (m, p). Now if m + p = 17 then f (m, p) = m(17−m)/17
and, obviously, it has maximum 72/17 when m = 8 or m = 9.

So all the 306 summands in the horizontal sum will be maximal if we find a config-
uration in which every non-empty row contains 9 pluses and 8 minuses. The similar
statement holds for the vertical sum. In order to obtain the desired configuration take
a square 18× 18 and draw pluses on 9 generalized diagonals and minuses on 8 other
generalized diagonals (the 18th generalized diagonal remains empty).
06.11. The altitudes of a triangle are 12, 15 and 20. What is the area of the triangle?
Answer: 150.
Solution: Denote the sides of the triangle by a, b and c and its altitudes by ha, hb and
hc. Then we know that ha = 12, hb = 15 and hc = 20. By the well known relation
a : b = hb : ha it follows b = ha

hb
a = 12

15 a = 4
5 a. Analogously, c = ha

hc
a = 12

20 a = 3
5 a. Thus

half of the triangle’s circumference is s = 1
2 (a + b + c) = 1

2

(
a + 4

5 a + 3
5 a
)
= 6

5 a. For the
area ∆ of the triangle we have ∆ = 1

2 aha =
1
2 a 12 = 6a, and also by the well known Heron
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formula ∆ =
√

s(s− a)(s− b)(s− c) =
√

6
5 a · 1

5 a · 2
5 a · 3

5 a =
√

62

54 a4 = 6
25 a2. Hence,

6a = 6
25 a2, and we get a = 25 (b = 20, c = 15) and consequently ∆ = 150.

06.12. Let ABC be a triangle, let B1 be the midpoint of the side AB and C1 the midpoint of the
side AC. Let P be the point of intersection, other than A, of the circumscribed circles around the
triangles ABC1 and AB1C. Let P1 be the point of intersection, other than A, of the line AP with
the circumscribed circle around the triangle AB1C1. Prove that 2AP = 3AP1.
Solution: Since ∠PBB1 = ∠PBA = 180◦ −∠PC1A = ∠PC1C and ∠PCC1 = ∠PCA =
180◦ − ∠PB1A = ∠PB1B it follows that 4PBB1 is similar to 4PC1C. Let B2 and C2
be the midpoints of BB1 and CC1 respectively. It follows that ∠BPB2 = ∠C1PC2 and
hence ∠B2PC2 = ∠BPC1 = 180◦ −∠BAC, which implies that AB2PC2 lie on a circle. By
similarity it is now clear that AP/AP1 = AB2/AB1 = AC2/AC1 = 3/2.

A B

C

B1

C1

P

P1

B2

C2

06.13. In a triangle ABC, points D, E lie on sides AB, AC respectively. The lines BE and CD
intersect at F. Prove that if

BC2 = BD · BA + CE · CA,

then the points A, D, F, E lie on a circle.
Solution: Let G be a point on the segment BC determined by the condition BG · BC =
BD · BA. (Such a point exists because BD · BA < BC2.) Then the points A, D, G, C lie on
a circle. Moreover, we have

CE · CA = BC2 − BD · BA = BC · (BG + CG)− BC · BG = CB · CG,

hence the points A, B, G, E lie on a circle as well. Therefore

∠DAG = ∠DCG, ∠EAG = ∠EBG,

which implies that

∠DAE +∠DFE = ∠DAG +∠EAG +∠BFC
= ∠DCG +∠EBG +∠BFC.

But the sum on the right side is the sum of angles in4BFC. Thus ∠DAE+∠DFE = 180◦,
and the desired result follows.

06.14. There are 2006 points marked on the surface of a sphere. Prove that the surface can be cut
into 2006 congruent pieces so that each piece contains exactly one of these points inside it.
Solution: Choose a North Pole and a South Pole so that no two points are on the same
parallel and no point coincides with either pole. Draw parallels through each point.
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Divide each of these parallels into 2006 equal arcs so that no point is the endpoint of
any arc. In the sequel, “to connect two points” means to draw the smallest arc of the
great circle passing through these points. Denote the points of division by Ai,j, where
i is the number of the parallel counting from North to South (i = 1, 2, . . . , 2006), and
Ai,1, Ai,2, . . . , Ai,2006 are the points of division on the i’th parallel, where the numbering
is chosen such that the marked point on the i’th parallel lies between Ai,i and Ai,i+1.

Consider the lines connecting gradually

N − A1,1 − A2,1 − A3,1 − · · · − A2006,1 − S
N − A1,2 − A2,2 − A3,2 − · · · − A2006,2 − S

...
N − A1,2006 − A2,2006 − A3,2006 − · · · − A2006,2006 − S

These lines divide the surface of the sphere into 2006 parts which are congruent by
rotation; each part contains one of the given points.

06.15. Let the medians of the triangle ABC intersect at the point M. A line t through M
intersects the circumcircle of ABC at X and Y so that A and C lie on the same side of t. Prove
that BX · BY = AX · AY + CX · CY.
Solution: Let us start with a lemma: If the diagonals of an inscribed quadrilateral ABCD
intersect at O, then AB·BC

AD·DC = BO
OD . Indeed,

AB · BC
AD · DC

=
1
2 AB · BC · sin B

1
2 AD · DC · sin D

=
area(ABC)
area(ADC)

=
h1

h2
=

BO
OD

.

A

B

C

D

O
h1

h2

A C

B

M
R

S

X

Y

Now we have (from the lemma) AX·AY
BX·BY = AR

RB and CX·CY
BX·BY = CS

SB , so we have to prove
AR
RB + CS

SB = 1.
Suppose at first that the line RS is not parallel to AC. Let RS intersect AC at K

and the line parallel to AC through B at L. So AR
RB = AK

BL and CS
SB = CK

BL ; we must prove
that AK + CK = BL. But AK + CK = 2KB1, and BL = BM

MB1
· KB1 = 2KB1, completing the

proof.

A C

B

B1

K

L

M

R

S

If RS ‖ AC, the conclusion is trivial.
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06.16. Are there four distinct positive integers such that adding the product of any two of them to
2006 yields a perfect square?
Answer: No, there are no such integers.
Solution: Suppose there are such integers. Let us consider the situation modulo 4. Then
each square is 0 or 1. But 2006 ≡ 2 (mod 4). So the product of each two supposed
numbers must be 2 (mod 4) or 3 (mod 4). From this it follows that there are at least
three odd numbers (because the product of two even numbers is 0 (mod 4)). Two of
these odd numbers are congruent modulo 4, so their product is 1 (mod 4), which is a
contradiction.

06.17. Determine all positive integers n such that 3n + 1 is divisible by n2.
Answer: Only n = 1 satisfies the given condition.
Solution: First observe that if n2 | 3n + 1, then n must be odd, because if n is even, then
3n is a square of an odd integer, hence 3n + 1 ≡ 1 + 1 = 2 (mod 4), so 3n + 1 cannot be
divisible by n2 which is a multiple of 4.

Assume that for some n > 1 we have n2 | 3n + 1. Let p be the smallest prime divisor
of n. We have shown that p > 2. It is also clear that p 6= 3, since 3n + 1 is never divisible
by 3. Therefore p ≥ 5. We have p | 3n + 1, so also p | 32n − 1. Let k be the smallest
positive integer such that p | 3k − 1. Then we have k | 2n, but also k | p− 1 by Fermat’s
theorem. The numbers 31 − 1, 32 − 1 do not have prime divisors other than 2, so p ≥ 5
implies k ≥ 3. This means that gcd(2n, p− 1) ≥ k ≥ 3, and therefore gcd(n, p− 1) > 1,
which contradicts the fact that p is the smallest prime divisor of n. This completes the
proof.

06.18. For a positive integer n let an denote the last digit of n(nn). Prove that the sequence (an) is
periodic and determine the length of the minimal period.
Solution: Let bn and cn denote the last digit of n and nn, respectively. Obviously, if
bn = 0, 1, 5, 6, then cn = 0, 1, 5, 6 and an = 0, 1, 5, 6, respectively.

If bn = 9, then nn ≡ 1 (mod 2) and consequently an = 9. If bn = 4, then nn ≡ 0
(mod 2) and consequently an = 6.

If bn = 2, 3, 7, or 8, then the last digits of nm run through the periods: 2− 4− 8− 6,
3− 9− 7− 1, 7− 9− 3− 1 or 8− 4− 2− 6, respectively. If bn = 2 or bn = 8, then nn ≡ 0
(mod 4) and an = 6.

In the remaining cases bn = 3 or bn = 7, if n ≡ ±1 (mod 4), then so is nn.
If bn = 3, then n ≡ 3 (mod 20) or n ≡ 13 (mod 20) and nn ≡ 7 (mod 20) or nn ≡ 13

(mod 20), so an = 7 or an = 3, respectively.
If bn = 7, then n ≡ 7 (mod 20) or n ≡ 17 (mod 20) and nn ≡ 3 (mod 20) or nn ≡ 17

(mod 20), so an = 3 or an = 7, respectively.
Finally, we conclude that the sequence (an) has the following period of length 20:

1 − 6 − 7 − 6 − 5 − 6 − 3 − 6 − 9 − 0 − 1 − 6 − 3 − 6 − 5 − 6 − 7 − 6 − 9 − 0

06.19. Does there exist a sequence a1, a2, a3, . . . of positive integers such that the sum of every n
consecutive elements is divisible by n2 for every positive integer n?
Answer: Yes. One such sequence begins 1, 3, 5, 55, 561, 851, 63253, 110055,. . ..
Solution: We will show that whenever we have positive integers a1, . . . , ak such that
n2 | ai+1 + · · ·+ ai+n for every n ≤ k and i ≤ k− n, then it is possible to choose ak+1 such
that n2 | ai+1 + · · ·+ ai+n for every n ≤ k + 1 and i ≤ k + 1− n. This directly implies the
positive answer to the problem because we can start constructing the sequence from any
single positive integer.
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To obtain the necessary property, it is sufficient for ak+1 to satisfy

ak+1 ≡ −(ak−n+2 + · · ·+ ak) (mod n2)

for every n ≤ k + 1. This is a system of k + 1 congruences.
Note first that, for any prime p and positive integer l such that pl ≤ k + 1, if the

congruence with module p2l is satisfied then also the congruence with module p2(l−1)

is satisfied. To see this, group the last pl elements of a1, . . . , ak+1 into p groups of
pl−1 consecutive elements. By choice of a1, . . . , ak, the sums computed for the first
p − 1 groups are all divisible by p2(l−1). By assumption, the sum of the elements in
all p groups is divisible by p2l . Hence the sum of the remaining pl−1 elements, that is
ak−pl−1+2 + · · ·+ ak+1, is divisible by p2(l−1).

Secondly, note that, for any relatively prime positive integers c, d such that cd ≤ k + 1,
if the congruences both with module c2 and module d2 hold then also the congruence
with module (cd)2 holds. To see this, group the last cd elements of a1, . . . , ak+1 into d
groups of c consecutive elements, as well as into c groups of d consecutive elements.
Using the choice of a1, . . . , ak and the assumption together, we get that the sum of the
last cd elements of a1, . . . , ak+1 is divisible by both c2 and d2. Hence this sum is divisible
by (cd)2.

The two observations let us reject all congruences except for the ones with module
being the square of a prime power pl such that pl+1 > k + 1. The resulting system
has pairwise relatively prime modules and hence possesses a solution by the Chinese
Remainder Theorem.
06.20. A 12-digit positive integer consisting only of digits 1, 5 and 9 is divisible by 37. Prove
that the sum of its digits is not equal to 76.
Solution: Let N be the initial number. Assume that its digit sum is equal to 76.

The key observation is that 3 · 37 = 111, and therefore 27 · 37 = 999. Thus we have
a divisibility test similar to the one for divisibility by 9: for x = an103n + an−1103(n−1) +
· · ·+ a1103 + a0, we have x ≡ an + an−1 + · · ·+ a0 (mod 37). In other words, if we take
the digits of x in groups of three and sum these groups, we obtain a number congruent
to x modulo 37.

The observation also implies that A = 111 111 111 111 is divisible by 37. Therefore
the number N − A is divisible by 37, and since it consists of the digits 0, 4 and 8, it is
divisible by 4. The sum of the digits of N− A equals 76− 12 = 64. Therefore the number
1
4 (N − A) contains only the digits 0, 1, 2; it is divisible by 37; and its digits sum up to 16.
Applying our divisibility test to this number, we sum four three-digit groups consisting
of the digits 0, 1, 2 only. No digits will be carried, and each digit of the sum S is at
most 8. Also S is divisible by 37, and its digits sum up to 16. Since S ≡ 16 ≡ 1 (mod 3)
and 37 ≡ 1 (mod 3), we have S/37 ≡ 1 (mod 3). Therefore S = 37(3k + 1), that is, S
is one of 037, 148, 259, 370, 481, 592, 703, 814, 925; but each of these either contains the
digit 9 or does not have a digit sum of 16.





Results
In the the tables below, the following abbreviations have been used.

Bel Belgium Ger Germany Pol Poland
Blr Belarus Ice Iceland StP St. Petersburg
Den Denmark Lat Latvia Swe Sweden
Est Estonia Lit Lithuania
Fin Finland Nor Norway

Belgium and Belarus participated in 2005 and 2004, respectively.

2002 Algebra Combinatorics Geometry Number theory Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Den 5 5 0 1 4 5 0 0 5 5 0 5 0 0 2 0 0 2 0 0 39

Est 5 5 3 0 5 4 4 0 5 0 0 4 5 0 2 2 0 4 5 0 53

Fin 5 5 2 5 5 5 5 0 5 5 4 1 1 0 5 1 2 0 0 1 57

Ger 5 5 1 4 5 3 0 5 0 0 5 5 5 1 5 0 5 2 4 5 65

Ice 5 2 2 0 3 5 2 0 0 2 5 0 1 0 0 3 0 0 0 0 30

Lat 5 5 2 0 5 5 5 0 0 5 0 0 1 1 2 1 1 4 0 1 43

Lit 5 5 5 4 5 5 0 0 5 5 5 1 5 1 0 2 0 5 5 5 68

Nor 4 5 1 4 4 5 5 2 1 5 5 5 5 0 5 0 5 5 0 5 71

Pol 5 5 0 5 5 5 0 0 5 4 0 5 5 0 0 4 3 5 5 5 66

StP 5 5 5 5 5 5 1 5 0 5 5 5 5 5 0 5 5 5 5 5 86

Swe 0 5 1 0 5 5 0 5 0 5 1 5 2 0 5 1 4 2 0 1 47

Mean 4.5 4.7 2.0 2.5 4.6 4.7 2.0 1.5 2.4 3.7 2.7 3.3 3.2 0.7 2.4 1.7 2.3 3.1 2.2 2.5

2003 Algebra Combinatorics Geometry Number theory Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Den 5 5 0 0 1 0 1 5 5 0 0 5 0 5 0 2 0 1 3 5 43

Est 3 5 5 5 4 0 1 5 5 1 0 2 5 0 5 5 5 0 5 0 61

Fin 1 5 5 5 5 0 1 0 5 0 0 0 0 0 0 5 0 1 5 0 38

Ger 1 0 0 4 2 0 1 1 5 0 1 5 0 0 0 4 5 0 3 0 32

Ice 1 0 5 2 1 0 1 0 0 0 0 5 0 0 5 5 0 0 5 1 31

Lat 5 5 5 5 2 5 4 0 2 0 0 0 0 0 0 5 5 0 5 5 53

Lit 1 5 3 5 5 0 5 0 1 0 0 5 0 0 5 5 3 0 4 2 49

Nor 1 5 0 0 5 0 3 2 5 1 0 5 0 0 0 5 5 0 2 0 39

Pol 5 5 5 5 5 0 5 2 4 0 0 5 5 0 5 5 5 0 5 2 68

StP 5 5 5 5 5 5 5 5 0 5 0 5 5 5 5 5 5 0 5 5 85

Swe 0 0 5 5 5 0 4 0 0 0 2 1 0 0 0 5 2 0 5 3 37

Mean 2.5 3.6 3.5 3.7 3.6 0.9 2.8 1.8 2.9 0.6 0.3 3.5 1.4 0.9 2.3 4.6 3.2 0.2 4.3 2.1
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2004 Algebra Number theory Combinatorics Geometry Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Blr 5 4 5 5 5 5 5 5 5 5 2 4 5 1 3 5 5 5 0 0 79

Den 0 5 0 5 5 5 5 0 0 0 2 5 5 2 5 1 5 5 0 0 55

Est 1 1 5 0 5 5 5 0 5 5 5 5 5 1 5 5 5 5 5 5 78

Fin 0 5 5 5 3 5 2 0 5 4 1 4 5 0 5 5 5 5 4 5 73

Ger 4 5 0 5 5 5 5 5 5 2 2 4 5 1 1 0 5 0 0 0 59

Ice 4 5 0 5 0 5 3 1 2 0 0 0 5 0 3 1 4 5 1 5 49

Lat 4 5 5 3 5 5 0 0 5 4 2 1 5 0 5 0 5 5 0 0 59

Lit 5 4 4 5 5 5 5 0 0 2 3 0 2 0 5 0 5 5 5 5 65

Nor 0 5 0 5 5 5 4 3 5 4 5 3 0 5 5 0 3 5 0 5 67

Pol 5 4 5 0 5 5 5 3 5 5 0 4 5 1 5 5 5 5 5 5 82

StP 5 4 5 4 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 0 89

Swe 1 4 0 3 0 5 5 0 0 2 2 0 0 0 5 0 5 0 0 0 32

Mean 2.8 4.2 2.8 3.8 4.0 5.0 4.1 1.8 3.5 3.2 2.4 2.9 3.9 1.0 4.3 2.2 4.8 4.2 2.1 2.5

2005 Algebra Combinatorics Geometry Number theory Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bel 1 5 0 1 0 1 3 4 0 5 4 2 3 0 0 0 0 0 5 5 39

Den 0 0 0 5 0 0 0 1 0 5 0 0 5 0 2 0 0 1 0 5 24

Est 0 0 0 2 5 5 0 1 5 5 0 1 3 0 5 0 0 0 0 5 37

Fin 5 5 0 5 0 5 0 5 5 5 5 5 5 5 5 0 0 5 5 5 75

Ger 1 5 0 5 0 5 1 1 4 5 5 5 2 0 0 5 3 5 5 5 62

Ice 1 0 0 0 5 0 0 1 1 5 5 0 4 0 0 0 0 3 0 5 30

Lat 4 0 0 5 1 0 4 0 1 5 5 5 5 5 0 0 5 5 5 5 60

Lit 5 5 0 4 0 0 0 5 5 5 0 0 5 0 5 0 0 4 5 5 53

Nor 3 5 0 4 0 1 2 4 4 5 0 0 3 2 0 0 5 0 5 5 48

Pol 5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 95

StP 5 5 0 5 0 0 0 5 5 5 5 5 2 5 5 5 5 5 1 5 73

Swe 5 0 0 5 0 0 0 0 5 5 5 5 2 0 0 0 0 5 5 5 47

Mean 2.9 2.9 0.0 3.8 1.3 1.8 1.2 2.7 3.3 5.0 3.2 2.8 3.7 1.8 2.2 1.2 1.9 3.2 3.4 5.0

2006 Algebra Combinatorics Geometry Number theory Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Den 5 0 0 1 3 3 5 0 5 0 0 2 0 0 0 0 1 5 0 5 35

Est 5 4 5 0 0 5 5 0 0 0 5 0 5 0 5 0 5 3 0 3 50

Fin 5 5 5 1 0 5 3 0 0 0 1 5 0 0 5 5 5 5 0 0 50

Ger 5 0 3 0 0 5 3 4 0 3 5 5 0 0 5 5 1 5 5 5 59

Ice 5 5 0 0 0 3 1 0 0 3 0 0 1 2 0 0 0 5 0 0 25

Lat 1 0 2 0 0 2 0 0 0 0 2 0 5 0 5 5 5 5 5 5 42

Lit 5 5 5 1 3 5 5 5 5 1 5 5 0 0 5 5 1 3 2 0 66

Nor 5 5 5 4 1 5 5 0 5 0 5 1 0 0 0 5 1 5 1 0 53

Pol 5 3 5 4 3 4 5 0 3 0 5 5 5 5 5 5 0 5 5 5 77

StP 5 5 5 4 5 5 5 5 5 5 5 5 4 0 5 5 5 5 5 5 93

Swe 5 5 5 5 1 5 1 2 0 0 5 5 0 0 5 0 4 3 0 5 56

Mean 4.6 3.4 3.6 1.8 1.5 4.3 3.5 1.5 2.1 1.1 3.5 3.0 1.8 0.6 3.6 3.2 2.5 4.5 2.1 3.0



Sponsors of BW07

The Baltic Way 2007 was sponsored by

• Danish Ministry of Education
• Carlsbergs Mindelegat for Brygger J.C. Jacobsen
• Cryptomathic
• Dansk Industri
• Nykredit
• Siemens
• SimCorp A/S
• Topdanmark
• Texas Instruments
• N. Zahles Gymnasieskole
• Experimentarium

http://www.uvm.dk/
http://www.carlsbergsmindelegat.dk/
http://www.cryptomatic.com/
http://www.di.dk/English
http://www.nykredit.com/corporate/
http://www.simcorp.com/default.aspx?lang=en
http://www.topdanmark.dk/ir/index.php?ID=196
http://education.ti.com/educationportal/sites/DANMARK/homePage/index.html
http://www.zahlesgym.dk
http://www.experimentarium.dk/index.php?id=248
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